Skip to main content

The Neural Basis of Sleepiness in Narcoleptic Mice

  • Chapter
  • First Online:
Narcolepsy

Abstract

Everyone with narcolepsy has some degree of daytime sleepiness, and for most, sleepiness is the symptom of greatest concern. This chronic sleepiness is often severe and can substantially impair relationships, the ability to drive safely, and performance at school and work. Although it is now clear that narcolepsy with cataplexy is caused by an extensive and selective loss of the orexin/hypocretin-producing neurons, remarkably little is known about how this results in chronic sleepiness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chemelli RM, Willie JT, Sinton CM, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999;98(4):437ā€“51.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. Hara J, Beuckmann CT, Nambu T, et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron. 2001;30(2):345ā€“54.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  3. Chou TC, Lee CE, Lu J, et al. Orexin (hypocretin) neurons contain dynorphin. J Neurosci. 2001;21(19):RC168ā€“73.

    PubMedĀ  CASĀ  Google ScholarĀ 

  4. Crocker A, Espana RA, Papadopoulou M, et al. Concomitant loss of dynorphin, NARP, and orexin in narcolepsy. Neurology. 2005;65(8):1184ā€“8.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  5. Hara J, Yanagisawa M, Sakurai T. Difference in obesity phenotype between orexin-knockout mice and orexin neuron-deficient mice with same genetic Ā­background and environmental conditions. Neurosci Lett. 2005;380(3):239ā€“42.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  6. Kantor S, Mochizuki T, Janisiewicz A, et al. Orexin neurons are necessary for the circadian control of REM sleep. Sleep. 2009;32:1127ā€“34.

    PubMedĀ  Google ScholarĀ 

  7. Beuckmann CT, Sinton CM, Williams SC, et al. Expression of a poly-glutamine-ataxin-3 transgene in orexin neurons induces narcolepsy-cataplexy in the rat. J Neurosci. 2004;24(18):4469ā€“77.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  8. Zhang S, Lin L, Kaur S, et al. The development of hypocretin (orexin) deficiency in hypocretin/ataxin-3 transgenic rats. Neuroscience. 2007;148(1):34ā€“43.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  9. Kisanuki Y, Chemelli R, Sinton C, et al. The role of orexin receptor type-1 (OX1R) in the regulation of sleep. Sleep. 2000;23:A91.

    Google ScholarĀ 

  10. Sakurai T. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci. 2007;8(3):171ā€“81.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  11. Funato H, Tsai AL, Willie JT, et al. Enhanced orexin receptor-2 signaling prevents diet-induced obesity and improves leptin sensitivity. Cell Metab. 2009;9(1):64ā€“76.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  12. Willie JT, Chemelli RM, Sinton CM, et al. Distinct narcolepsy syndromes in orexin receptor-2 and orexin null mice: molecular genetic dissection of non-REM and REM sleep regulatory processes. Neuron. 2003;38(5):715ā€“30.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  13. Mochizuki T, Marcus J, Arrigoni E, et al. Rescue of fragmented sleep/wake behavior in orexin receptor-2 disrupted mice. Annual Meeting of the Society for Neuroscience. 2007.

    Google ScholarĀ 

  14. Alexandre C, Mochizuki T, Arrigoni E, et al. Orexin acts in the basal forebrain to stabilize wakefulness. Paper presented at: Annual Meeting of the Society for Neuroscience, 2008; Washington, DC.

    Google ScholarĀ 

  15. Lin L, Faraco J, Li R, et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell. 1999;98(3):365ā€“76.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  16. Broughton R, Valley V, Aguirre M, Roberts J, Suwalski W, Dunham W. Excessive daytime sleepiness and the pathophysiology of narcolepsy-cataplexy: a laboratory perspective. Sleep. 1986;9(1 Pt 2):205ā€“15.

    PubMedĀ  CASĀ  Google ScholarĀ 

  17. Scammell TE. The neurobiology, diagnosis, and treatment of narcolepsy. Ann Neurol. 2003;53(2):154ā€“66.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  18. Mochizuki T, Crocker A, McCormack S, Yanagisawa M, Sakurai T, Scammell TE. Behavioral state instability in orexin knock-out mice. J Neurosci. 2004;24(28):6291ā€“300.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  19. Nishino S, Riehl J, Hong J, Kwan M, Reid M, Mignot E. Is narcolepsy a REM sleep disorder? Analysis of sleep abnormalities in narcoleptic Dobermans. Neurosci Res. 2000;38(4):437ā€“46.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  20. Diniz Behn CG, Kopell N, Brown EN, Mochizuki T, Scammell TE. Delayed orexin signaling consolidates wakefulness and sleep: physiology and modeling. J Neurophysiol. 2008;99(6):3090ā€“103.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  21. Lo CC, Chou T, Penzel T, et al. Common scale-invariant patterns of sleep-wake transitions across mammalian species. Proc Natl Acad Sci USA. 2004;101(50):17545ā€“8.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  22. Blumberg MS, Coleman CM, Johnson ED, Shaw C. Developmental divergence of sleep-wake patterns in orexin knockout and wild-type mice. Eur J Neurosci. 2007;25(2):512ā€“8.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  23. Diniz Behn CG, Klerman EB, Mochizuki T, Lin S-C, Scammell TE. Abnormal sleep/wake dynamics in orexin knockout mice. Sleep. 2010;33(3):297ā€“306.

    PubMedĀ  Google ScholarĀ 

  24. Gervasoni D, Lin SC, Ribeiro S, Soares ES, Pantoja J, Nicolelis MA. Global forebrain dynamics predict rat behavioral states and their transitions. J Neurosci. 2004;24(49):11137ā€“47.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  25. Tafti M, Rondouin G, Besset A, Billiard M. Sleep deprivation in narcoleptic subjects: effect on sleep stages and EEG power density. Electroencephalogr Clin Neurophysiol. 1992;83(6):339ā€“49.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  26. Tafti M, Villemin E, Carlander B, Besset A, Billiard M. Sleep in human narcolepsy revisited with special reference to prior wakefulness duration. Sleep. 1992;15(4):344ā€“51.

    PubMedĀ  CASĀ  Google ScholarĀ 

  27. Besset A, Tafti M, Nobile L, Billiard M. Homeostasis and narcolepsy. Sleep. 1994;17(8 Suppl):S29ā€“34.

    PubMedĀ  CASĀ  Google ScholarĀ 

  28. Zeitzer JM, Buckmaster CL, Lyons DM, Mignot E. Locomotor-dependent and -independent components to hypocretin-1 (orexin A) regulation in sleep-wake consolidating monkeys. J Physiol. 2004;557(Pt 3):1045ā€“53.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  29. Zeitzer JM, Buckmaster CL, Parker KJ, Hauck CM, Lyons DM, Mignot E. Circadian and homeostatic regulation of hypocretin in a primate model: implications for the consolidation of wakefulness. J Neurosci. 2003;23(8):3555ā€“60.

    PubMedĀ  CASĀ  Google ScholarĀ 

  30. Estabrooke IV, McCarthy MT, Ko E, et al. Fos expression in orexin neurons varies with behavioral state. J Neurosci. 2001;21(5):1656ā€“62.

    PubMedĀ  CASĀ  Google ScholarĀ 

  31. Deboer T, Overeem S, Visser NA, et al. Convergence of circadian and sleep regulatory mechanisms on hypocretin-1. Neuroscience. 2004;129(3):727ā€“32.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  32. Desarnaud F, Murillo-Rodriguez E, Lin L, et al. The diurnal rhythm of hypocretin in young and old F344 rats. Sleep. 2004;27(5):851ā€“6.

    PubMedĀ  Google ScholarĀ 

  33. Vernet C, Arnulf I. Narcolepsy with long sleep time: a specific entity? Sleep. 2009;32(9):1229ā€“35.

    PubMedĀ  Google ScholarĀ 

  34. Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjorkum AA, Greene RW, McCarley RW. Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science. 1997;276(5316):1265ā€“8.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  35. Murillo-Rodriguez E, Liu M, Blanco-Centurion C, Shiromani PJ. Effects of hypocretin (orexin) neuronal loss on sleep and extracellular adenosine levels in the rat basal forebrain. Eur J Neurosci. 2008;28(6):1191ā€“8.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  36. Volk S, Schulz H, Yassouridis A, Wilde-Frenz J, Simon O. The influence of two behavioral regimens on the distribution of sleep and wakefulness in narcoleptic patients. Sleep. 1990;13(2):136ā€“42.

    PubMedĀ  CASĀ  Google ScholarĀ 

  37. Dantz B, Edgar DM, Dement WC. Circadian rhythms in narcolepsy: studies on a 90 minute day. Electroencephalogr Clin Neurophysiol. 1994;90(1):24ā€“35.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  38. Khatami R, Landolt HP, Achermann P, et al. Challenging sleep homeostasis in narcolepsy-cataplexy: implications for non-REM and REM sleep regulation. Sleep. 2008;31(6):859ā€“67.

    PubMedĀ  Google ScholarĀ 

  39. Edgar DM, Dement WC, Fuller CA. Effect of SCN lesions on sleep in squirrel monkeys: evidence for opponent processes in sleep-wake regulation. J Neurosci. 1993;13(3):1065ā€“79.

    PubMedĀ  CASĀ  Google ScholarĀ 

  40. Dijk DJ, Czeisler CA. Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci. 1995;15(5 Pt 1):3526ā€“38.

    PubMedĀ  CASĀ  Google ScholarĀ 

  41. Kripke D. Biological rhythm disturbances might cause narcolepsy. In: Guilleminault C, Dement W, Passouant P, editors. Narcolepsy. New York: Spectrum; 1976. p. 475ā€“83.

    Google ScholarĀ 

  42. Broughton R, Krupa S, Boucher B, Rivers M, Mullington J. Impaired circadian waking arousal in narcolepsy-cataplexy. Sleep Res Online. 1998;1(4):159ā€“65.

    PubMedĀ  CASĀ  Google ScholarĀ 

  43. Abrahamson EE, Leak RK, Moore RY. The suprachiasmatic nucleus projects to posterior hypothalamic arousal systems. Neuroreport. 2001;12(2):435ā€“40.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  44. Lu J, Zhang YH, Chou TC, et al. Contrasting effects of ibotenate lesions of the paraventricular nucleus and subparaventricular zone on sleep-wake cycle and temperature regulation. J Neurosci. 2001;21(13):4864ā€“74.

    PubMedĀ  CASĀ  Google ScholarĀ 

  45. Chou TC, Scammell TE, Gooley JJ, Gaus SE, Saper CB, Lu J. Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J Neurosci. 2003;23(33):10691ā€“702.

    PubMedĀ  CASĀ  Google ScholarĀ 

  46. Yoshida K, McCormack S, Espana RA, Crocker A, Scammell TE. Afferents to the orexin neurons of the rat brain. J Comp Neurol. 2006;494(5):845ā€“61.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  47. Deurveilher S, Semba K. Indirect projections from the suprachiasmatic nucleus to major arousal-promoting cell groups in rat: implications for the circadian control of behavioural state. Neuroscience. 2005;130(1):165ā€“83.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  48. Zhang S, Zeitzer JM, Yoshida Y, et al. Lesions of the suprachiasmatic nucleus eliminate the daily rhythm of hypocretin-1 release. Sleep. 2004;27(4):619ā€“27.

    PubMedĀ  Google ScholarĀ 

  49. Aston-Jones G, Chen S, Zhu Y, Oshinsky M. A neural circuit for circadian regulation of arousal. Nat Neurosci. 2001;4(7):732ā€“8.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  50. Khatami R, Landolt HP, Achermann P, et al. Insufficient non-REM sleep intensity in narcolepsy-cataplexy. Sleep. 2007;30(8):980ā€“9.

    PubMedĀ  Google ScholarĀ 

  51. Nobili L, Besset A, Ferrillo F, Rosadini G, Schiavi G, Billiard M. Dynamics of slow wave activity in Ā­narcoleptic patients under bed rest conditions. Electroencephalogr Clin Neurophysiol. 1995;95(6):414ā€“25.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  52. Fronczek R, Raymann RJ, Overeem S, et al. Manipulation of skin temperature improves nocturnal sleep in narcolepsy. J Neurol Neurosurg Psychiatry. 2008;79(12):1354ā€“7.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  53. Mochizuki T, Klerman EB, Sakurai T, Scammell TE. Elevated body temperature during sleep in orexin knockout mice. Am J Physiol Regul Integr Comp Physiol. 2006;291(3):R533ā€“40.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  54. Fadel J, Frederick-Duus D. Orexin/hypocretin modulation of the basal forebrain cholinergic system: insights from in vivo microdialysis studies. Pharmacol Biochem Behav. 2008;90(2):156ā€“62.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  55. Harsh J, Peszka J, Hartwig G, Mitler M. Night-time sleep and daytime sleepiness in narcolepsy. J Sleep Res. 2000;9(3):309ā€“16.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  56. Peyron C, Tighe DK, van den Pol AN, et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci. 1998;18(23):9996ā€“10015.

    PubMedĀ  CASĀ  Google ScholarĀ 

  57. Burlet S, Tyler CJ, Leonard CS. Direct and indirect excitation of laterodorsal tegmental neurons by Hypocretin/Orexin peptides: implications for wakefulness and narcolepsy. J Neurosci. 2002;22(7):2862ā€“72.

    PubMedĀ  CASĀ  Google ScholarĀ 

  58. Eggermann E, Serafin M, Bayer L, et al. Orexins/hypocretins excite basal forebrain cholinergic neurones. Neuroscience. 2001;108(2):177ā€“81.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  59. Eriksson KS, Sergeeva O, Brown RE, Haas HL. Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus. J Neurosci. 2001;21(23):9273ā€“9.

    PubMedĀ  CASĀ  Google ScholarĀ 

  60. Horvath T, Peyron C, Diano S, et al. Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. J Comp Neurol. 1999;415(2):145ā€“59.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  61. Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature. 2007;450(7168):420ā€“4.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  62. Carter ME, Adamantidis A, Ohtsu H, Deisseroth K, de Lecea L. Sleep homeostasis modulates hypocretin-mediated sleep-to-wake transitions. J Neurosci. 2009;29(35):10939ā€“49.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  63. Mileykovskiy BY, Kiyashchenko LI, Siegel JM. Behavioral correlates of activity in identified Ā­hypocretin/orexin neurons. Neuron. 2005;46(5):787ā€“98.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  64. Lee MG, Hassani OK, Jones BE. Discharge of identified orexin/hypocretin neurons across the sleep-Ā­waking cycle. J Neurosci. 2005;25(28):6716ā€“20.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  65. Li Y, Gao XB, Sakurai T, van den Pol AN. Hypocretin/Orexin excites hypocretin neurons via a local glutamate neuron-A potential mechanism for orchestrating the hypothalamic arousal system. Neuron. 2002;36(6):1169ā€“81.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  66. EspaƱa RA, Scammell TE. Sleep neurobiology for the clinician. Sleep. 2004;27(4):811ā€“20.

    PubMedĀ  Google ScholarĀ 

  67. Parmentier R, Ohtsu H, Djebbara-Hannas Z, Valatx JL, Watanabe T, Lin JS. Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: evidence for the role of brain histamine in behavioral and sleep-wake Ā­control. J Neurosci. 2002;22(17):7695ā€“711.

    PubMedĀ  CASĀ  Google ScholarĀ 

  68. Huang ZL, Mochizuki T, Qu WM, et al. Altered sleep-wake characteristics and lack of arousal response to H3 receptor antagonist in histamine H1 receptor knockout mice. Proc Natl Acad Sci USA. 2006;103(12):4687ā€“92.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  69. Hunsley MS, Palmiter RD. Norepinephrine-deficient mice exhibit normal sleep-wake states but have shorter sleep latency after mild stress and low doses of amphetamine. Sleep. 2003;26(5):521ā€“6.

    PubMedĀ  Google ScholarĀ 

  70. Nishino S, Sakurai E, Nevsimalova S, et al. Decreased CSF histamine in narcolepsy with and without low CSF hypocretin-1 in comparison to healthy controls. Sleep. 2009;32(2):175ā€“80.

    PubMedĀ  Google ScholarĀ 

  71. Kanbayashi T, Kodama T, Kondo H, et al. CSF histamine contents in narcolepsy, idiopathic hypersomnia and obstructive sleep apnea syndrome. Sleep. 2009;32(2):181ā€“7.

    PubMedĀ  Google ScholarĀ 

  72. Nishino S, Fujiki N, Ripley B, et al. Decreased brain histamine content in hypocretin/orexin receptor-2 mutated narcoleptic dogs. Neurosci Lett. 2001;313(3):125ā€“8.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  73. Montplaisir J, de Champlain J, Young SN, et al. Narcolepsy and idiopathic hypersomnia: biogenic amines and related compounds in CSF. Neurology. 1982;32(11):1299ā€“302.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  74. Faull KF, Guilleminault C, Berger PA, Barchas JD. Cerebrospinal fluid monoamine metabolites in narcolepsy and hypersomnia. Ann Neurol. 1983;13(3):258ā€“63.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  75. Faull KF, Guilleminault C, Berger PA, Barchas JD. Cerebrospinal fluid monoamine metabolites in narcolepsy: reanalysis. Ann Neurol. 1989;25(3):310ā€“1.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  76. Frederick-Duus D, Guyton MF, Fadel J. Food-elicited increases in cortical acetylcholine release require orexin transmission. Neuroscience. 2007;149(3):499ā€“507.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  77. Guo RX, Anaclet C, Roberts JC, et al. Differential effects of acute and repeat dosing with the H3 antagonist GSK189254 on the sleep-wake cycle and narcoleptic episodes in Oxāˆ’/āˆ’ mice. Br J Pharmacol. 2009;157(1):104ā€“17.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  78. EspaƱa RA, McCormack SL, Mochizuki T, Scammell TE. Running promotes wakefulness and increases cataplexy in orexin knockout mice. Sleep. 2007;30(11):1417ā€“25.

    PubMedĀ  Google ScholarĀ 

  79. Dishman RK. Brain monoamines, exercise, and behavioral stress: animal models. Med Sci Sports Exerc. 1997;29(1):63ā€“74.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  80. Chou TC, Bjorkum AA, Gaus SE, Lu J, Scammell TE, Saper CB. Afferents to the ventrolateral preoptic nucleus. J Neurosci. 2002;22(3):977ā€“90.

    PubMedĀ  CASĀ  Google ScholarĀ 

  81. Marcus JN, Aschkenasi CJ, Lee CE, et al. Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol. 2001;435(1):6ā€“25.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  82. Hirota K, Kushikata T, Kudo M, Kudo T, Lambert DG, Matsuki A. Orexin A and B evoke noradrenaline release from rat cerebrocortical slices. Br J Pharmacol. 2001;134(7):1461ā€“6.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  83. Zepelin H, Siegel J, Tobler I. Mammalian Sleep. In: Kryger M, Roth T, Dement W, editors. Principles and practice of sleep medicine. 4th ed. Philadelphia: Elsevier; 2005.

    Google ScholarĀ 

  84. Waterston RH, Lindblad-Toh K, Birney E, et al. Initial sequencing and comparative analysis of the mouse genome. Nature. 2002;420(6915):520ā€“62.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  85. Scammell TE, Willie JT, Guilleminault C, Siegel JM. A consensus definition of cataplexy in mouse models of narcolepsy. Sleep. 2009;32(1):111ā€“6.

    PubMedĀ  Google ScholarĀ 

  86. Alexandre C, Popa D, Fabre V, et al. Early life blockade of 5-hydroxytryptamine 1A receptors normalizes sleep and depression-like behavior in adult knock-out mice lacking the serotonin transporter. J Neurosci. 2006;26(20):5554ā€“64.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  87. Liu M, Thankachan S, Kaur S, et al. Orexin (hypocretin) gene transfer diminishes narcoleptic sleep behavior in mice. Eur J Neurosci. 2008;28(7):1382ā€“93.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  88. Ko B, Kantor S, Mochizuki T, Clark E, Clain E, Scammell T. Treatment of narcolepsy by gene therapy in mice lacking the orexin neurons. Paper presented at: Annual Meeting of the Society for Neuroscience, 2009; Chicago.

    Google ScholarĀ 

  89. Franken P, Malafosse A, Tafti M. Genetic determinants of sleep regulation in inbred mice. Sleep. 1999;22(2):155ā€“69.

    PubMedĀ  CASĀ  Google ScholarĀ 

  90. Mutant mice and neuroscience: recommendations concerning genetic background. Banbury Conference on genetic background in mice. Neuron. 1997;19(4):755ā€“9.

    Google ScholarĀ 

  91. Crusio WE, Goldowitz D, Holmes A, Wolfer D. Standards for the publication of mouse mutant studies. Genes Brain Behav. 2009;8(1):1ā€“4.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  92. Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature. 2005;437(7063):1257ā€“63.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgments

We appreciate the thoughtful comments on this text by A. Lim, and the generosity of T. Mochizuki in sharing preliminary data. Writing of this chapter was in part supported by the National Institutes of Health Grant NS055367 to T.E.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas E. Scammell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Scammell, T.E., Alexandre, C. (2011). The Neural Basis of Sleepiness in Narcoleptic Mice. In: Baumann, C., Bassetti, C., Scammell, T. (eds) Narcolepsy. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8390-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8390-9_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8389-3

  • Online ISBN: 978-1-4419-8390-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics