Skip to main content

Optogenetic Probing of Hypocretins’ Regulation of Wakefulness

  • Chapter
  • First Online:
Book cover Narcolepsy

Abstract

In mammals, sleep is commonly defined as “a rapidly reversible state of (behavioral) immobility and greatly reduced sensory responsiveness to environmental stimuli” [1]. Sleep and wake states have been strongly conserved during evolution, and “sleep-like” states exist in most organisms, including worms, flies, and fish [2], suggesting common underlying neural circuits and endocrine systems. During the last decades, neural circuits that modulate the sleep–wake cycle have been identified using a combination of lesion, histological, pharmacological, genetic, and in vitro and in vivo electrophysiology techniques. Collectively, they support the “reciprocal interaction” and other computational models which describe the sleep–wake cycle as a complex, yet partially defined balance between subcortical excitatory and inhibitory neural circuits in the brain [3]. However, limitations of current techniques have hampered our understanding of their dynamics and functional connectivity. In this chapter, we summarize key experiments that led to the key hypothesis that the hypocretin (Hcrt; also known as orexin) system sets the arousal threshold. We discuss our implementation of in vivo optogenetic techniques to overcome previous techniques’ limitations and establish causal links between Hcrt neuron activation and behavioral state transitions. Finally, we propose to use optogenetics as a tool to probe the necessity, sufficiency, and connectivity of defined neural circuits in the regulation of sleep and wakefulness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel JM. Do all animals sleep? Trends Neurosci. 2008;31:208–13.

    Article  PubMed  CAS  Google Scholar 

  2. Zimmerman JE, Naidoo N, Raizen DM, Pack AI. Conservation of sleep: insights from non-mammalian model systems. Trends Neurosci. 2008;31:371–6.

    Article  PubMed  CAS  Google Scholar 

  3. Pace-Schott EF, Hobson JA. The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev Neurosci. 2002;3:591–605.

    PubMed  CAS  Google Scholar 

  4. Jouvet M, Michel F. Electromyographic correlations of sleep in the chronic decorticate & mesencephalic cat. C R Seances Soc Biol Fil. 1959;153:422–5.

    PubMed  CAS  Google Scholar 

  5. de Lecea L et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA. 1998;95:322–7.

    Article  PubMed  Google Scholar 

  6. Sakurai T et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998;92:573–85.

    Article  PubMed  CAS  Google Scholar 

  7. Sakurai T. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci. 2007;8:171–81.

    Article  PubMed  CAS  Google Scholar 

  8. Sutcliffe JG, de Lecea L. The hypocretins: setting the arousal threshold. Nat Rev Neurosci. 2002;3:339–49.

    Article  PubMed  CAS  Google Scholar 

  9. Fort P, Bassetti CL, Luppi PH. Alternating vigilance states: new insights regarding neuronal networks and mechanisms. Eur J Neurosci. 2009;29:1741–53.

    Article  PubMed  CAS  Google Scholar 

  10. Mileykovskiy BY, Kiyashchenko LI, Siegel JM. Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron. 2005;46:787–98.

    Article  PubMed  CAS  Google Scholar 

  11. Lee MG, Hassani OK, Jones BE. Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci. 2005;25:6716–20.

    Article  PubMed  CAS  Google Scholar 

  12. Takahashi K, Lin JS, Sakai K. Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse. Neuroscience. 2008;153:860–70.

    Article  PubMed  CAS  Google Scholar 

  13. Eggermann E et al. The wake-promoting hypocretin-orexin neurons are in an intrinsic state of membrane depolarization. J Neurosci. 2003;23:1557–62.

    PubMed  CAS  Google Scholar 

  14. Suntsova NV, Dergacheva OY, Burikov AA. The role of the posterior hypothalamus in controlling the paradoxical phase of sleep. Neurosci Behav Physiol. 2000;30:161–7.

    Article  PubMed  CAS  Google Scholar 

  15. Dergacheva OY, Meyers IE, Burikov AA. Effects of electrical stimulation of the posterior part of the hypothalamus on the spike activity of neurons in the oral nucleus of the pons. Neurosci Behav Physiol. 2005;35:865–70.

    Article  PubMed  Google Scholar 

  16. Nunez A, Moreno-Balandran ME, Rodrigo-Angulo ML, Garzon M, De Andres I. Relationship between the perifornical hypothalamic area and oral pontine reticular nucleus in the rat. Possible implication of the hypocretinergic projection in the control of rapid eye movement sleep. Eur J Neurosci. 2006;24:2834–42.

    Article  PubMed  CAS  Google Scholar 

  17. Goutagny R, Luppi PH, Salvert D, Gervasoni D, Fort P. GABAergic control of hypothalamic melanin-concentrating hormone-containing neurons across the sleep-waking cycle. NeuroReport. 2005;16:1069–73.

    Article  PubMed  CAS  Google Scholar 

  18. Lu JW et al. Disinhibition of perifornical hypothalamic neurones activates noradrenergic neurones and blocks pontine carbachol-induced REM sleep-like episodes in rats. J Physiol. 2007;582:553–67.

    Article  PubMed  CAS  Google Scholar 

  19. Watson CJ, Soto-Calderon H, Lydic R, Baghdoyan HA. Pontine reticular formation (PnO) administration of hypocretin-1 increases PnO GABA levels and wakefulness. Sleep. 2008;31:453–64.

    PubMed  Google Scholar 

  20. Moreno-Balandran E, Garzon M, Bodalo C, Reinoso-Suarez F, de Andres I. Sleep-wakefulness effects after microinjections of hypocretin 1 (orexin A) in cholinoceptive areas of the cat oral pontine tegmentum. Eur J Neurosci. 2008;28:331–41.

    Article  PubMed  Google Scholar 

  21. Matsuki T et al. Selective loss of GABA(B) receptors in orexin-producing neurons results in disrupted sleep/wakefulness architecture. Proc Natl Acad Sci USA. 2009;106:4459–64.

    Article  PubMed  CAS  Google Scholar 

  22. Danguir J, Nicolaidis S. Cortical activity and sleep in the rat lateral hypothalamic syndrome. Brain Res. 1980;185:305–21.

    Article  PubMed  CAS  Google Scholar 

  23. Jurkowlaniec E, Pracki T, Trojniar W, Tokarski J. Effect of lateral hypothalamic lesion on sleep-waking pattern and EEG power spectra in the rat. Acta Neurobiol Exp (Wars). 1996;56:249–53.

    CAS  Google Scholar 

  24. Denoyer M, Sallanon M, Buda C, Kitahama K, Jouvet M. Neurotoxic lesion of the mesencephalic reticular formation and/or the posterior hypothalamus does not alter waking in the cat. Brain Res. 1991;539:287–303.

    Article  PubMed  CAS  Google Scholar 

  25. Jurkowlaniec E, Trojniar W, Ozorowska T, Tokarski J. Differential effect of the damage to the lateral hypothalamic area on hippocampal theta rhythm during waking and paradoxical sleep. Acta Neurobiol Exp (Wars). 1989;49:153–69.

    CAS  Google Scholar 

  26. Cohen RA, Albers HE. Disruption of human circadian and cognitive regulation following a discrete hypothalamic lesion: a case study. Neurology. 1991;41:726–9.

    Article  PubMed  CAS  Google Scholar 

  27. Eisensehr I et al. Hypersomnia associated with bilateral posterior hypothalamic lesion. A polysomnographic case study. Eur Neurol. 2003;49:169–72.

    Article  PubMed  CAS  Google Scholar 

  28. Schwartz WJ, Stakes JW, Hobson JA. Transient cataplexy after removal of a craniopharyngioma. Neurology. 1984;34:1372–5.

    Article  PubMed  CAS  Google Scholar 

  29. Gerashchenko D, Blanco-Centurion C, Greco MA, Shiromani PJ. Effects of lateral hypothalamic lesion with the neurotoxin hypocretin-2-saporin on sleep in Long-Evans rats. Neuroscience. 2003;116:223–35.

    Article  PubMed  CAS  Google Scholar 

  30. Murillo-Rodriguez E, Liu M, Blanco-Centurion C, Shiromani PJ. Effects of hypocretin (orexin) neuronal loss on sleep and extracellular adenosine levels in the rat basal forebrain. Eur J Neurosci. 2008;28:1191–8.

    Article  PubMed  Google Scholar 

  31. Gerashchenko D, Blanco-Centurion CA, Miller JD, Shiromani PJ. Insomnia following hypocretin2-saporin lesions of the substantia nigra. Neuroscience. 2006;137:29–36.

    Article  PubMed  CAS  Google Scholar 

  32. Waite JJ et al. 192 immunoglobulin G-saporin produces graded behavioral and biochemical changes accompanying the loss of cholinergic neurons of the basal forebrain and cerebellar Purkinje cells. Neuroscience. 1995;65:463–76.

    Article  PubMed  CAS  Google Scholar 

  33. Dugovic C et al. Blockade of orexin-1 receptors attenuates orexin-2 receptor antagonism-induced sleep promotion in the rat. J Pharmacol Exp Ther. 2009;330:142–51.

    Article  PubMed  CAS  Google Scholar 

  34. Whitman DB et al. Discovery of a potent, CNS-penetrant orexin receptor antagonist based on an n, n-disubstituted-1,4-diazepane scaffold that promotes sleep in rats. ChemMedChem. 2009;4:1069–74.

    Article  PubMed  CAS  Google Scholar 

  35. Brisbare-Roch C et al. Promotion of sleep by targeting the orexin system in rats, dogs and humans. Nat Med. 2007;13:150–5.

    Article  PubMed  CAS  Google Scholar 

  36. Kelz MB et al. An essential role for orexins in emergence from general anesthesia. Proc Natl Acad Sci USA. 2008;105:1309–14.

    Article  PubMed  CAS  Google Scholar 

  37. Willie JT et al. Distinct narcolepsy syndromes in orexin receptor-2 and orexin null mice: molecular genetic dissection of non-REM and REM sleep regulatory processes. Neuron. 2003;38:715–30.

    Article  PubMed  CAS  Google Scholar 

  38. Chen L et al. REM sleep changes in rats induced by siRNA-mediated orexin knockdown. Eur J Neurosci. 2006;24:2039–48.

    Article  PubMed  Google Scholar 

  39. Gerashchenko D, Shiromani PJ. Different neuronal phenotypes in the lateral hypothalamus and their role in sleep and wakefulness. Mol Neurobiol. 2004;29:41–59.

    Article  PubMed  CAS  Google Scholar 

  40. Verret L et al. A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neurosci. 2003;4:19.

    Article  PubMed  Google Scholar 

  41. Adamantidis A et al. Sleep architecture of the melanin-concentrating hormone receptor 1-knockout mice. Eur J Neurosci. 2008;27:1793–800.

    Article  PubMed  Google Scholar 

  42. Hassani OK, Lee MG, Jones BE. Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle. Proc Natl Acad Sci USA. 2009;106:2418–22.

    Article  PubMed  CAS  Google Scholar 

  43. Hara J et al. Thyrotropin-releasing hormone increases behavioral arousal through modulation of hypocretin/orexin neurons. J Neurosci. 2009;29:3705–14.

    Article  PubMed  CAS  Google Scholar 

  44. Gonzalez JA, Horjales-Araujo E, Fugger L, Broberger C, Burdakov D. Stimulation of orexin/hypocretin neurones by thyrotropin-releasing hormone. J Physiol. 2009;587:1179–86.

    Article  PubMed  CAS  Google Scholar 

  45. Wolfer DP, Crusio WE, Lipp HP. Knockout mice: simple solutions to the problems of genetic background and flanking genes. Trends Neurosci. 2002;25:336–40.

    Article  PubMed  CAS  Google Scholar 

  46. Luo L, Callaway EM, Svoboda K. Genetic dissection of neural circuits. Neuron. 2008;57:634–60.

    Article  PubMed  CAS  Google Scholar 

  47. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci. 2005;8:1263–8.

    Article  PubMed  CAS  Google Scholar 

  48. Nagel G et al. Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol. 2005;15:2279–84.

    Article  PubMed  CAS  Google Scholar 

  49. Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature. 2007;450:420–4.

    Article  PubMed  CAS  Google Scholar 

  50. Zhang F et al. Multimodal fast optical interrogation of neural circuitry. Nature. 2007;446:633–9.

    Article  PubMed  CAS  Google Scholar 

  51. Zhang F et al. Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat Neurosci. 2008;11:631–3.

    Article  PubMed  Google Scholar 

  52. Tsai HC et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science. 2009;324:1080–4.

    Article  PubMed  CAS  Google Scholar 

  53. Carter ME, Adamantidis A, Ohtsu H, Deisseroth K, de Lecea L. Sleep homeostasis modulates hypocretin-mediated sleep-to-wake transitions. J Neurosci. 2009;29:10939–49.

    Article  PubMed  CAS  Google Scholar 

  54. Eriksson KS, Sergeeva O, Brown RE, Haas HL. Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus. J Neurosci. 2001;21:9273–9.

    PubMed  CAS  Google Scholar 

  55. Winsky-Sommerer R et al. Interaction between the corticotropin-releasing factor system and hypocretins (orexins): a novel circuit mediating stress response. J Neurosci. 2004;24:11439–48.

    Article  PubMed  CAS  Google Scholar 

  56. Boutrel B et al. Role for hypocretin in mediating stress-induced reinstatement of cocaine-seeking behavior. Proc Natl Acad Sci USA. 2005;102:19168–73.

    Article  PubMed  CAS  Google Scholar 

  57. Lutter M et al. Orexin signaling mediates the antidepressant-like effect of calorie restriction. J Neurosci. 2008;28:3071–5.

    Article  PubMed  CAS  Google Scholar 

  58. Livet J et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature. 2007;450:56–62.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

A.A. is supported by fellowships from the Fonds National de la Recherche Scientifique (“Charge de Recherche”), NIH (K99), and NARSAD. L.d.L. is supported by grants from the National Institute on Drug Abuse, Defense Advanced Research Projects Agency, and National Alliance for Research on Schizophrenia and Depression.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Adamantidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Adamantidis, A., de Lecea, L. (2011). Optogenetic Probing of Hypocretins’ Regulation of Wakefulness. In: Baumann, C., Bassetti, C., Scammell, T. (eds) Narcolepsy. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8390-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8390-9_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8389-3

  • Online ISBN: 978-1-4419-8390-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics