Skip to main content

The Cell in the Electric Field

  • Chapter
  • First Online:
Book cover Clinical Aspects of Electroporation

Abstract

An exposure of a cell to an external electric field results in the induced transmembrane voltage (ΔΨm) that superimposes to the resting voltage. This can have a range of effects, from modification of the activity of voltage-gated channels to membrane electroporation, and accurate knowledge of spatial distribution and time course of ΔΨm is important for the understanding of these effects. In this chapter, we present the analytical, numerical, and experimental methods of determination of ΔΨm, and combine them with the monitoring of electroporation-induced transmembrane molecular transport (TMT) in Chinese Hamster Ovary (CHO) cells. Potentiometric measurements are performed using di-8-ANEPPS, and TMT is monitored using propidium iodide. In isolated cells, we combine analytical derivation (for spherical cells) and numerical computation of ΔΨm (for irregularly shaped cells) with potentiometric measurements to show that the latter are accurate and reliable. Monitoring of TMT in these same cells shows that it is confined to the regions with the highest |ΔΨm|. We then review other parameters influencing electroporation of isolated cells, and proceed, through the intermediate case of dense suspensions, to cells in direct contact with each other. We use the scrape-loading test to show that the CHO cells in a monolayer are interconnected, and then study ΔΨm and TMT in a cluster of four such cells. With low pulse amplitudes, the cluster behaves as one big cell, with ΔΨm continuous along its outer boundary, reflecting the interconnections. With interconnections inhibited, the cells start to behave as individual entities, with ΔΨm continuous along the plasma membrane of each cell. With the cluster exposed to porating (higher amplitude) pulses, TMT occurs in the membrane regions for which computations predict the highest |ΔΨm| if the cells are modeled as insulated, suggesting that the interconnections are blocked by supraphysiological ΔΨm, either directly by voltage gating or indirectly through changes in ionic concentrations caused by electroporation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bedlack RS, Wei M, Fox SH, et al. Distinct electric potentials in soma and neurite membranes. Neuron. 1994;13:1187–93.

    Article  PubMed  CAS  Google Scholar 

  2. Cheng DKL, Tung L, Sobie EA. Nonuniform responses of transmembrane potential during electric field stimulation of single cardiac cells. Am J Physiol. 1999;277:H351–62.

    PubMed  CAS  Google Scholar 

  3. Neumann E, Kakorin S, Toensing K. Fundamentals of electroporative delivery of drugs and genes. Bioelectrochem Bioenerg. 1999;48:3–16.

    Article  PubMed  CAS  Google Scholar 

  4. Teissié J, Eynard N, Gabriel B, et al. Electropermeabilization of cell membranes. Adv Drug Deliv Rev. 1999;35:3–19.

    Article  PubMed  Google Scholar 

  5. Burnett P, Robertson JK, Palmer JM, et al. Fluorescence imaging of electrically stimulated cells. J Biomol Screen. 2003;8:660–7.

    Article  PubMed  CAS  Google Scholar 

  6. Sharma V, Tung L. Ionic currents involved in shock-induced nonlinear changes in transmembrane potential responses of single cardiac cells. Pflugers Arch. 2004;449:248–56.

    PubMed  CAS  Google Scholar 

  7. Huang CJ, Harootunian A, Maher MP, et al. Characterization of voltage-gated sodium-channel blockers by electrical stimulation and fluorescence detection of membrane potential. Nat Biotechnol. 2006;24:439–46.

    Article  PubMed  CAS  Google Scholar 

  8. Pauly H, Schwan HP. Über die Impedanz einer Suspension von kugelformigen Teilchen mit einer Schale. Z Naturforsch B. 1959;14:125–31.

    Google Scholar 

  9. Kotnik T, Bobanović F, Miklavčič D. Sensitivity of transmembrane voltage induced by applied electric fields – a theoretical analysis. Bioelectrochem Bioenerg. 1997;43:285–91.

    Article  CAS  Google Scholar 

  10. Hibino M, Shigemori M, Itoh H, et al. Membrane conductance of an electroporated cell analyzed by ­submicrosecond imaging of transmembrane potential. Biophys J. 1991;59:209–20.

    Article  PubMed  CAS  Google Scholar 

  11. Hibino M, Itoh H, Kinosita Jr K. Time courses of cell electroporation as revealed by submicrosecond imaging of transmembrane potential. Biophys J. 1993;64:1789–800.

    Article  PubMed  CAS  Google Scholar 

  12. Tekle E, Astumian RD, Chock PB. Selective and asymmetric molecular-transport across electroporated cell-membranes. Proc Natl Acad Sci USA. 1994;91:11512–6.

    Article  PubMed  CAS  Google Scholar 

  13. Gabriel B, Teissié J. Direct observation in the millisecond time range of fluorescent molecule asymmetrical interaction with the electropermeabilized cell membrane. Biophys J. 1997;73:2630–7.

    Article  PubMed  CAS  Google Scholar 

  14. Gabriel B, Teissié J. Time courses of mammalian cell electropermeabilization observed by millisecond imaging of membrane property changes during the pulse. Biophys J. 1999;76:2158–65.

    Article  PubMed  CAS  Google Scholar 

  15. Schwan HP. Electrical properties of tissue and cell suspensions. Adv Biol Med Phys. 1957;5:147–209.

    PubMed  CAS  Google Scholar 

  16. Grosse C, Schwan HP. Cellular membrane potentials induced by alternating fields. Biophys J. 1992;63:1632–42.

    Article  PubMed  CAS  Google Scholar 

  17. Kotnik T, Miklavčič D, Slivnik T. Time course of transmembrane voltage induced by time-varying electric fields – a method for theoretical analysis and its application. Bioelectrochem Bioenerg. 1998;45:3–16.

    Article  CAS  Google Scholar 

  18. Kotnik T, Miklavčič D. Second-order model of membrane electric field induced by alternating external electric fields. IEEE Trans Biomed Eng. 2000;47:1074–81.

    Article  PubMed  CAS  Google Scholar 

  19. Fluhler E, Burnham VG, Loew LM. Spectra, membrane binding, and potentiometric responses of new charge shift probes. Biochemistry. 1985;24:5749–55.

    Article  PubMed  CAS  Google Scholar 

  20. Gross D, Loew LM, Webb W. Optical imaging of cell membrane potential changes induced by applied electric fields. Biophys J. 1986;50:339–48.

    Article  PubMed  CAS  Google Scholar 

  21. Loew LM. Voltage sensitive dyes: measurement of membrane potentials induced by DC and AC electric fields. Bioelectromagnetics. 1992;Suppl 1:179–89.

    Google Scholar 

  22. Pucihar G, Kotnik T, Miklavčič D. Measuring the induced membrane voltage with di-8-ANEPPS. J Visual Exp 2009;33:1659.

    Google Scholar 

  23. Bernhard J, Pauly H. Generation of potential differences across membranes of ellipsoidal cells in an alternating electrical field. Biophysik. 1973;10:89–98.

    Article  Google Scholar 

  24. Kotnik T, Miklavčič D. Analytical description of transmembrane voltage induced by electric fields on spheroidal cells. Biophys J. 2000;79:670–9.

    Article  PubMed  CAS  Google Scholar 

  25. Gimsa J, Wachner D. Analytical description of the transmembrane voltage induced on arbitrarily oriented ellipsoidal and cylindrical cells. Biophys J. 2001;81:1888–96.

    Article  PubMed  CAS  Google Scholar 

  26. Fear EC, Stuchly MA. Modeling assemblies of biological cells exposed to electric fields. IEEE Trans Biomed Eng. 1998;45:1259–71.

    Article  PubMed  CAS  Google Scholar 

  27. Buitenweg JR, Rutten WL, Marani E. Geometry-based finite-element modeling of the electrical contact between a cultured neuron and a microelectrode. IEEE Trans Biomed Eng. 2003;50:501–9.

    Article  PubMed  Google Scholar 

  28. Valič B, Golzio M, Pavlin M, et al. Effect of electric field induced transmembrane potential on spheroidal cells: theory and experiment. Eur Biophys J. 2003;32:519–28.

    Article  PubMed  Google Scholar 

  29. Pucihar G, Kotnik T, Valič B, et al. Numerical determination of transmembrane voltage induced on irregularly shaped cells. Ann Biomed Eng. 2006;34:642–52.

    Article  PubMed  CAS  Google Scholar 

  30. Pucihar G, Miklavčič D, Kotnik T. A time-dependent numerical model of transmembrane voltage inducement and electroporation of irregularly shaped cells. IEEE Trans Biomed Eng. 2009;56:1491–501.

    Article  PubMed  Google Scholar 

  31. Teruel MN, Meyer T. Electroporation-induced formation of individual calcium entry sites in the cell body and processes of adherent cells. Biophys J. 1997;73:1785–96.

    Article  PubMed  CAS  Google Scholar 

  32. Rols MP, Teissié J. Electropermeabilization of mammalian cells. Quantitative analysis of the phenomenon. Biophys J. 1990;58:1089–98.

    Article  PubMed  CAS  Google Scholar 

  33. Wolf H, Rols MP, Boldt E, et al. Control by pulse duration of electric-field mediated gene transfer in mammalian cells. Biophys J. 1994;66:524–31.

    Article  PubMed  CAS  Google Scholar 

  34. Rols MP, Teissié J. Electropermeabilization of mammalian cells to macromolecules: control by pulse duration. Biophys J. 1998;75:1415–23.

    Article  PubMed  CAS  Google Scholar 

  35. Canatella PJ, Karr JF, Petros JA, et al. Quantitative study of electroporation-mediated molecular uptake and cell viability. Biophys J. 2001;80:755–64.

    Article  PubMed  CAS  Google Scholar 

  36. Maček-Lebar A, Miklavčič D. Cell electropermeabilization to small molecules in vitro: control by pulse parameters. Radiol Oncol. 2001;35:193–202.

    Google Scholar 

  37. Čemažar M, Jarm T, Miklavčič D, et al. Effect of electric-field intensity on electropermeabilization and electrosensitivity of various tumor-cell lines in vitro. Electro Magnetobiol. 1998;17:261–70.

    Google Scholar 

  38. Troiano GC, Tung L, Sharma V, et al. The reduction in electroporation voltages by the addition of a surfactant to planar lipid bilayers. Biophys J. 1998;75:880–8.

    Article  PubMed  CAS  Google Scholar 

  39. Kandušer M, Fošnarič M, Šentjurc M, et al. Effect of surfactant polyoxyethylene glycol (C12E8) on electroporation of cell line DC3F. Colloid Surface A. 2003;214:205–17.

    Article  Google Scholar 

  40. Sukharev SI, Klenchin VA, Serov SM, et al. Electroporation and electrophoretic DNA transfer into cells. Biophys J. 1992;63:1320–7.

    Article  PubMed  CAS  Google Scholar 

  41. Satkauskas S, André F, Bureau MF, et al. Electrophoretic component of electric pulses determines the efficacy of in vivo DNA electrotransfer. Human Gene Ther. 2005;16:1194–201.

    Article  CAS  Google Scholar 

  42. Kandušer M, Miklavčič D, Pavlin M. Mechanisms involved in gene electrotransfer using high- and low-voltage pulses – an in vitro study. Bioelectrochemistry. 2009;74:265–71.

    Article  PubMed  Google Scholar 

  43. Tekle E, Astumian RD, Chock PB. Electroporation by using bipolar oscillating electric field: an improved method for DNA transfection of NIH 3T3 cells. Proc Natl Acad Sci USA. 1994;88:4230–4.

    Article  Google Scholar 

  44. Kotnik T, Mir LM, Flisar K, et al. Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses. Part I. Increased efficiency of permabilization. Bioelectro-chemistry. 2001;54:83–90.

    Article  PubMed  CAS  Google Scholar 

  45. Kotnik T, Miklavčič D, Mir LM. Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses: Part II. Reduced electrolytic contamination. Bioelectrochemistry. 2001;54:91–5.

    Article  PubMed  CAS  Google Scholar 

  46. Chang DC. Cell poration and cell fusion using an oscillating electric field. Biophys J. 1989;56:641–52.

    Article  PubMed  CAS  Google Scholar 

  47. Chang DC, Gao PQ, Maxwell BL. High efficiency gene transfection by electroporation using a radio-frequency electric field. Biochim Biophys Acta. 1991;1092:153–60.

    Article  PubMed  CAS  Google Scholar 

  48. Xie TD, Tsong TY. Study of mechanisms of electric ­field-induced DNA transfection. II. Transfection by ­low-amplitude, low-frequency alternating electric fields. Biophys J. 1990;58:897–903.

    Article  PubMed  CAS  Google Scholar 

  49. Kotnik T, Pucihar G, Reberšek M, et al. Role of pulse shape in cell membrane electropermeabilization. Biochim Biophys Acta. 2003;1614:193–200.

    Article  PubMed  CAS  Google Scholar 

  50. Pucihar G, Mir LM, Miklavčič D. The effect of pulse repetition frequency on the uptake into electropermeabilized cells in vitro with possible applications in electrochemotherapy. Bioelectrochemistry. 2002;57:167–72.

    Article  PubMed  CAS  Google Scholar 

  51. Pucihar G, Kotnik T, Kandušer M, et al. The influence of medium conductivity on electropermeabilization and survival of cells in vitro. Bioelectrochemistry. 2001;54:107–15.

    Article  PubMed  CAS  Google Scholar 

  52. Nicotera C, Bellomo G, Orrenius S. Calcium-mediated mechanisms in chemically induced cell death. Annu Rev Pharmacol Toxicol. 1992;32:449–70.

    Article  PubMed  CAS  Google Scholar 

  53. Golzio M, Mora MP, Raynaud C, et al. Control by osmotic pressure of voltage-induced permeabilization and gene transfer in mammalian cells. Biophys J. 1998;74:3015–22.

    Article  PubMed  CAS  Google Scholar 

  54. Rols MP, Delteil C, Serin G, et al. Temperature effects on electrotransfection of mammalian cells. Nucleic Acids Res. 1994;22:540.

    Article  PubMed  CAS  Google Scholar 

  55. Susil R, Šemrov D, Miklavčič D. Electric field induced transmembrane potential depends on cell density and organization. Electro Magnetobiol. 1998;17:391–9.

    Google Scholar 

  56. Pavlin M, Pavšelj N, Miklavčič D. Dependence of induced transmembrane potential on cell density, arrangement, and cell position inside a cell system. IEEE Trans Biomed Eng. 2002;49:605–12.

    Article  PubMed  Google Scholar 

  57. Pucihar G, Kotnik T, Teissié J, et al. Electroporation of dense cell suspensions. Eur Biophys J. 2007;36:173–85.

    Article  PubMed  Google Scholar 

  58. Reberšek M, Faurie C, Kandušer M, et al. Electroporator with automatic change of electric field direction improves gene electrotransfer in vitro. Biomed Eng Online. 2007;6(25):1–11.

    Google Scholar 

  59. Trontelj K, Reberšek M, Kandušer M, et al. Optimization of bulk cell electrofusion in vitro for production of human–mouse heterohybridoma cells. Bioelectrochemistry. 2008;74:124–9.

    Article  PubMed  CAS  Google Scholar 

  60. Towhidi L, Kotnik T, Pucihar G, et al. Variability of the minimal transmembrane voltage resulting in detectable membrane electroporation. Electromagn Biol Med. 2008;27:372–85.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadej Kotnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kotnik, T., Pucihar, G., Miklavčič, D. (2011). The Cell in the Electric Field. In: Kee, S., Gehl, J., Lee, E. (eds) Clinical Aspects of Electroporation. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8363-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8363-3_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8362-6

  • Online ISBN: 978-1-4419-8363-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics