Longitudinal Models for Binary Data

  • Brajendra C. SutradharEmail author
Part of the Springer Series in Statistics book series (SSS)


In Chapter 6, we have discussed the stationary and nonstationary correlation models for count data, and estimated the effects of the covariates on the count responses, by taking the correlation structure into account. In this chapter, we deal with repeated binary responses. For example, there exists a longitudinal study on the health effects of air pollution, where wheezing status (1 = yes, 0 = no) of a large number of independent children are repeatedly recorded, along with maternal smoking status, family cleanliness status, level of chemicals used, and pet-owning status of the family.


Correlation Structure Binary Data Correlation Model Binary Response Longitudinal Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amemiya, T. (1985). Advanced Econometrics, Cambridge, MA: Harvard University Press.Google Scholar
  2. 2.
    Bahadur, R.R. (1961). A representation of the joint distribution of responses to n dichotomous items. In Studies in Item Analysis and Prediction. Stanford Mathematical Studies in the Social Sciences; Solomon, H., Ed.; Vol. 6, 158−168.Google Scholar
  3. 3.
    Bandyopadhyay, U. & Biswas, A. (1999). Allocation by randomized play-the-winner rule in the presence of prognostic factors. Sankhya A 61, 396−412.MathSciNetGoogle Scholar
  4. 4.
    Cox, D. R. (1972). The analysis of multivariate binary data. Appl. Statist., 21, 113−120.zbMATHCrossRefGoogle Scholar
  5. 5.
    Cox, D. R. & Lewis, P. W. (1966). The Statistical Analysis of Series of Events. London: Chapman & Hall.Google Scholar
  6. 6.
    Farrell, P. J. & Sutradhar, B. C. (2006). A non-linear conditional probability model for generating correlated binary data. Statist. Probab. Lett., 76, 353−361.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Jacobs, P. A. & Lewis, P. A. W. (1983). Stationary discrete autoregressive moving average generated by mixtures. J. Time Series. Anal., 4, 19−36.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kanter, M. (1975). Autoregression for discrete processes mod 2. J. Appl. Probab., 12, 371−375.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Keenan, D. M. (1982). A time series analysis of binary data. J. Am. Stat. Assoc., 77, 816−821.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Klotz, J. (1973). Statistical inference in Bernoulli trials with dependence. Ann. Statist., 1, 373−379.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Liang, K. Y. & Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73, 13−22.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Lindquist, B. (1978). A note on Bernoulli trials with dependence. Scand. J. Statist., 5, 205−208.MathSciNetGoogle Scholar
  13. 13.
    Manski, C. F. (1987). Semi-parametric analysis of random effects linear models from binary panel data. Econometrica, 55, 357−362.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Mardia, K. V., Kent, J. T. & Bibby, J. M. (1979). Multivariate Analysis. London: Academic Press.Google Scholar
  15. 15.
    Prentice, R. L. (1988). Correlated binary regression with covariates specific to each binary observations. Biometrics, 44, 1033−1048.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Qaqish, B.F. (2003). A family of multivariate binary distributions for simulating correlated binary variables with specified marginal means and correlations. Biometrika, 90, 455−463.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Sutradhar, B. C. (2003). An overview on regression models for discrete longitudinal responses. Statist. Sci., 18, 377−393.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Sutradhar, B. C. (2008). On auto-regression type dynamic mixed models for binary panel data. Metron, 66, 205−217.Google Scholar
  19. 19.
    Sutradhar, B. C. (2010). Inferences in generalized linear longitudinal mixed models. The Canad. J. Statist., 38, 174−196.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Sutradhar, B.C., Biswas, A., & Bari, W. (2005). Marginal regression for binary longitudinal data in adaptive clinical trials. Scand. J. Statist., 32, 93−113.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Sutradhar, B. C. & Das, K. (1999). On the efficiency of regression estimators in generalized linear models for longitudinal data. Biometrika, 86, 459−65.zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Sutradhar, B. C. & Farrell, P. J. (2007). On optimal lag 1 dependence estimation for dynamic binary models with application to asthma data. Sankhya B, 69, 448−467.zbMATHMathSciNetGoogle Scholar
  23. 23.
    Sutradhar, B. C. & Jowaheer, V. (2010). Treatment design selection effects on parameter estimation in dynamic logistic models for longitudinal binary data. J. Statist. Comput. Simul., 80, 1053−1067.CrossRefGoogle Scholar
  24. 24.
    Sutradhar, B.C. & Kovacevic, M. (2000). Analysing Ordinal Longitudinal Survey Data : Generalized Estimating Equations Approach. Biometrika, 87, 837−848.zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Sutradhar, B. C., Rao, R. P,& Pandit, V. N. (2008). Generalized method of moments versus generalized quasi-likelihood inferences in binary panel data models. Sankhya B, 70, 34-62.zbMATHGoogle Scholar
  26. 26.
    Tagore, V. and Sutradhar, B. C. (2009). Conditional inference in linear versus nonlinear models for binary time series. J. Statist. Comput. Simul., 79, 881−897.zbMATHCrossRefGoogle Scholar
  27. 27.
    Tong, H. (1990). Nonlinear Time Series: A Dynamical System Approach. Oxford: Oxford University Press.Google Scholar
  28. 28.
    Wei, L. J. & Durham, S. (1978). The randomized play-the-winner rule in medical trials. J. Amer. Statist. Assoc., 73, 840−843.zbMATHCrossRefGoogle Scholar
  29. 29.
    Zeger, S.L., Liang, K.Y., & Albert, P.S. (1998). Models for longitudinal data: A generalized estimating equations approach. Biometrics, 44, 1049−1060.CrossRefMathSciNetGoogle Scholar
  30. 30.
    Zeger, S. L., Liang, K-Y., & Self, S. G. (1985). The analysis of binary longitudinal data with time independent covariates. Biometrika, 72, 31−38.zbMATHMathSciNetGoogle Scholar
  31. 31.
    Zhao, L. P. & Prentice, R. L. (1990). Correlated binary regression using a quadratic exponential model. Biometrika, 77, 642−648.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsMemorial UniversitySaint John’sCanada

Personalised recommendations