Advertisement

Longitudinal Models for Count Data

  • Brajendra C. SutradharEmail author
Chapter
Part of the Springer Series in Statistics book series (SSS)

Abstract

In longitudinal studies for count data, a small number of repeated count responses along with a set of multidimensional covariates are collected from a large number of independent individuals. For example, in a health care utilization study, the number of visits to a physician by a large number of independent individuals may be recorded annually over a period of several years. Also, the information on the covariates such as gender, number of chronic conditions, education level, and age, may be recorded for each individual.

Keywords

Count Data Correlation Structure Generalize Estimate Equation Correlation Model Longitudinal Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amemiya, T. (1985). Advanced Econometrics. Cambridge, MA: Harvard University Press.Google Scholar
  2. 2.
    Anderson, T. W., McCarthy, P. J., & Tukey, J. W. (1946). Staircase Method of Sensitivity Testing. Naval Ordinance Report, 35−46. Princeton, NJ: Statistical Research Group.Google Scholar
  3. 3.
    Atkinson, A. C. (1999). Optimum biased-coin designs for sequential treatment allocation with covariate information. Statist. Med., 18, 1741−1752.CrossRefGoogle Scholar
  4. 4.
    Crowder, M. (1995). On the use of a working correlation matrix in using generalized linear models for repeated measures. Biometrika, 82, 407−410.zbMATHCrossRefGoogle Scholar
  5. 5.
    Derman, C. (1957). Nonparametric up and down experimentation. Ann. Math. Stat., 28, 795−798.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Durham, S. D. & Flournoy, N. (1994). Random walks for quantile estimation. In Statistical Decision Theory and Related Topics V (S. S. Gupta and J. O. Berger, eds.) 467−476. New York: Springer.Google Scholar
  7. 7.
    Farewell, V. T., Viveros, R., & Sprott, D. A. (1993). Statistical consequences of an adaptive treatment allocation in a clinical trial. Canad. J. Statist., 21, 21−27.CrossRefGoogle Scholar
  8. 8.
    Jennison, C. & Turnbull, B. W. (2001). Group sequential tests with outcome-dependent treatment assignment. Sequential Anal., 20, 209−234.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Liang, K. Y. & Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 78, 13−22.CrossRefMathSciNetGoogle Scholar
  10. 10.
    Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multivariate Analysis. London: Academic Press.Google Scholar
  11. 11.
    McCullagh, P. (1983). Quasilikelihood functions. Ann. Statist. 11, 59−67.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    McKenzie, E. (1988). Some ARMA models for dependent sequences of Poisson counts. Advan. Appl. Probab., 20, 822−835.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Nelder, J. & Wedderburn, R. W. M. (1972). Generalized linear models. J. Roy. Statist. Soc. A135, 370−384.Google Scholar
  14. 14.
    Pocock, S. J. & Simon, R. (1975). Sequential treatment assignment with balancing for prognostic factors in the controlled clinical trial. Biometrics, 31, 103−115.zbMATHCrossRefGoogle Scholar
  15. 15.
    Rosenberger, W. F. (1996). New directions in adaptive designs. Statist. Sci., 11, 137−149.CrossRefGoogle Scholar
  16. 16.
    Royall, R. M. (1991). Ethics and statistics in randomized clinical trials (with discussion). Statist. Sci., 6, 52−62.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Smith, R. L. S. (1984). Properties of bias coin designs in sequential clinical trials.Annal. Statist., 12, 1018−1034.zbMATHCrossRefGoogle Scholar
  18. 18.
    Sutradhar, B. C. (2003). An overview on regression models for discrete longitudinal responses. Statist. Sci., 18, 377−393.zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Sutradhar, B.C., Biswas, A., & Bari, W. (2005). Marginal regression for binary longitudinal data in adaptive clinical trials. Scand. J. Statist., 32, 93−113.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Sutradhar, B. C. & Das, K. (1999). On the efficiency of regression estimators in generalized linear models for longitudinal data. Biometrika, 86, 459−465.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Sutradhar, B. C. & Jowaheer, V. (2006). Analyzing longitudinal count data from adaptive clinical trials: a weighted generalized quasi-likelihood approach. J. Statist. Comput. Simul., 76, 1079−1093.zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Sutradhar, B. C. & Kovacevic, M. (2000). Analyzing ordinal longitudinal survey data: Generalized estimating equations approach. Biometrika, 87, 837−848.zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Storer, B, E, (1989). Design and analysis of phase 1 clinical trial. Biometrics,, 45, 925−937.zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Tamura, R. N., Faries, D. E., Andersen, J. S., & Heiligenstein, J. H. (1994). A case study of an adaptive clinical trial in the treatment of out-patients with depressive disorder. J. Amer. Stat. Assoc., 89, 768−776.CrossRefGoogle Scholar
  25. 25.
    Temple, R. (1981). Government view points of clinical trials. Drug Inf. J., 16, 10−17.Google Scholar
  26. 26.
    Wedderburn, R. W. M. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika, 61, 439−447.MathSciNetGoogle Scholar
  27. 27.
    Wei, L. J. & Durham, S. (1978). The randomized play-the-winner rule in medical trials. J. Am. Statist. Assoc., 73, 840−843.zbMATHCrossRefGoogle Scholar
  28. 28.
    Wei, L. J., Smythe, R. T. Lin, D. Y., & Park, T. S. (1990). Statistical inference with datadependent treatment allocation rules. J. Am. Statist. Assoc., 85, 156−62.CrossRefMathSciNetGoogle Scholar
  29. 29.
    Zelen, M. (1969). Play-the-winner rule and the controlled clinical trial. J. Am. Statist. Assoc., 64, 131−46.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsMemorial UniversitySaint John’sCanada

Personalised recommendations