Advertisement

Familial Models for Count Data

  • Brajendra C. SutradharEmail author
Chapter
Part of the Springer Series in Statistics book series (SSS)

Abstract

Familial models for count data are also known as Poisson mixed models for count data. In this setup, count responses along with a set of multidimensional covariates are collected from the members of a large number of independent families. Let y ij denote the count response for the jth (j =1, …,n i ) member on the ith (i=1, …, K) family/cluster. Also, let x ij = (x ij1, …,x ijp )′ denote the p covariates associated with the count response y ij . For example, in a health economics study, a state government may be interested to know the effects of certain socioeconomic and epidemiological covariates such as gender, education level, and age on the number of visits by a family member to the house physician in a particular year. Note that in this problem it is also likely that the count responses of the members of a family are influenced by a common random family effect, say γ i. This makes the count responses of any two members of the same family correlated, and this correlation is usually referred to as the familial correlation. It is of scientific interest to find the effects of the covariates on the count responses of an individual member after taking the familial correlations into account.

Keywords

Generalize Linear Mixed Model Relative Bias Count Response Familial Correlation Approximate Likelihood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Breslow, N, E. & Clayton, D. G. (1993). Approximate inference in generalized linear mixed models. . J. Amer. Stat. Assoc., 88, 9−25.zbMATHCrossRefGoogle Scholar
  2. 2.
    Breslow, N. E. & Lin, X. (1995). Bias correction in generalized linear models with a single component of dispersion. Biometrika, 82, 81−92.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Chowdhury, M. R. I. & Sutradhar, B. C. (2009). Generalized quasilikelihood versus hierarchial likelihood inferences in generalized linear mixed models for count data. Sankhya B: Indian J. Statist. 71, 1−15.MathSciNetGoogle Scholar
  4. 4.
    Fahmeir, L. & Tutz, G. T. (1994). Multivariate Statistical Modelling Based on Generalized Linear Models. New York: Springer.Google Scholar
  5. 5.
    Gelfand, A. E. & Carlin, B. P. (1993). Maximum likelihood estimation for constrained or missing-data problems. Canad. J. Statist., 21, 303−311.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Geyer, C. J. & Thompson, E. A. (1992). Constrained Monte Carlo maximum likelihood for dependent data. J. R. Stats. Soc. B, 54, 657−699.MathSciNetGoogle Scholar
  7. 7.
    Henderson, C. R. (1950). Estimation of genetic parameters (Abstract). Ann. Math. Stat., 21, 309−310.Google Scholar
  8. 8.
    Jiang, J. (1998). Consistent estimators in generalized linear mixed models. J. Amer. Statist. Assoc., 93, 720−729.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Jiang, J. & Zhang, W. (2001). Robust estimation in generalized linear mixed models. Biometrika, 88, 753−765.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Johnson, N. L. & Kotz, S. (1972). Continuous Univariate Distributions 1. New York: Wiley.zbMATHGoogle Scholar
  11. 11.
    Jowaheer, V., Sutradhar, B. C., & Sneddon, G. (2009). On familial Poisson mixed models with multi-dimensional random effects. J. Statist. Comp. Simul., 79, 1043−1062.zbMATHCrossRefGoogle Scholar
  12. 12.
    Lee, Y. & Nelder, J. (1996). Hierarchical generalized linear models. J. R. Stats. Soc. B, 58, 619−678.zbMATHMathSciNetGoogle Scholar
  13. 13.
    Lin, X. (1997). Variance component testing in generalized linear models with random effects. Biometrika, 84, 309−326.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    McCullagh, P. (1983). Quasilikelihood functions. Ann. Statist., 11, 59−67.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    McCullagh, P. & Nelder, J. (1989). Generalized Linear Models, 2nd edn. London: Chapman and Hall.Google Scholar
  16. 16.
    McCulloch, C. E. (1997). Maximum likelihood algorithms for generalized linear mixed models. J. Amer. Statist. Assoc., 92, 162−170.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Nelder, J. & Wedderburn, R. W. M. (1972). Generalized linear models. J. Roy. Statist. Soc. A, 135, 370−384.CrossRefGoogle Scholar
  18. 18.
    Patterson, H. D. & Thompson, R. (1974). Recovery of interblock information when block sizes are unequal. Biometrika, 58, 545−554.CrossRefMathSciNetGoogle Scholar
  19. 19.
    Searle, S. E., Casella, G. & McCulloch, C. E. (1992). Variance Components. New York: John Wiley & Sons.Google Scholar
  20. 20.
    Sutradhar, B. C. (2003). An overview on regression models for discrete longitudinal responses. Statist. Sci., 18, 377−393.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Sutradhar, B. C. (2004). On exact quasilikelihood inference in generalized linear mixed models. Sankhya B: Indian J. Stat., 66, 261−289.MathSciNetGoogle Scholar
  22. 22.
    Sutradhar, B. C. & Das, K. (2001). On higher order approximation to the likelihood inference in the Poisson mixed model. Statist. Prob. Lett., 52, 59−67.zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Sutradhar, B. C. & Qu, Z. (1998). On approximate likelihood inference in Poisson mixed model. Canad. J. Ststist., 26, 169−186.zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Sutradhar, B. C. & Rao, R. Prabhakar (2001). On marginal quasi-likelihood inference in generalized linear mixed models. J. Multivariate Anal., 76, 1−34.zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Sutradhar, B. C. & Rao, R. Prabhakar (2003). On quasilikelihood inference in generalized linear mixed models with two variance components. Canad. J. Statist., 31, 415−435.zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Tanner, M. A. (1993). Tools for Statistical Inference: Observed Data and Data Augmentation. Berlin: Springer-Verlag.Google Scholar
  27. 27.
    Ten Have, T. R. & Morabia, A. (1999). Mixed effects models with bivariate and univariate association parameters for longitudinal bivariate binary response data. Biometrics, 55, 85−93.zbMATHCrossRefGoogle Scholar
  28. 28.
    Wedderburn, R. W. M. (1974). Quasi-likelihood functions, generalised linear models, and the Gauss-Newton method. Biometrika, 61, 439−447.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsMemorial UniversitySaint John’sCanada

Personalised recommendations