Advertisement

Overview of Linear Mixed Models for Longitudinal Data

  • Brajendra C. SutradharEmail author
Chapter
Part of the Springer Series in Statistics book series (SSS)

Abstract

Recall from the last chapter [eqn. (2.48)] that there exists [Verbeke and Molenberghs (2000, Chapter 3, eqn. (3.11)); Diggle, Liang, and Zeger (1994)] a random effects based longitudinal mixed model given by
$$ y_{it} = x^{\prime}_{it}\beta + z_{i}\gamma_{i} + \varepsilon_{it}, $$
(3.1)
where the ε it are independent errors for all t =1, …, T i for the ith (i=1, …, K) individual.

Keywords

Linear Mixed Model Instrumental Variable Generalize Little Square Dynamic Panel Data Random Effect Variance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amemiya, T. (1985). Advanced Econometrics. Cambridge, MA: Harvard University Press.Google Scholar
  2. 2.
    Arellano, M. & Bond, S. (1991). Some tests of specification for panel data: Monte carlo evidence and an application to employment equations. Rev. Eco. Statist., 58, 277−−298.zbMATHGoogle Scholar
  3. 3.
    Balestra, P. & Nerlove, M. (1966). Pooling cross-section and time series data in the estimation of a dynamic model: The demand for natural gas. Econometrica, 34, 585−612.CrossRefGoogle Scholar
  4. 4.
    Bun, M. J. G. & Carree, M. A. (2005). Bias-corrected estimation in dynamic panel data models. J. Business & Econo. Statist., 23, 200−210.CrossRefMathSciNetGoogle Scholar
  5. 5.
    Chow, S. C. & Shao, J. (1988). A new procedure for the estimation of variance components. Statist. Probab. Lett., 6, 349−355.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Diggle, P. J., Liang, K.-Y., & Zeger, S. L. (1994). Analysis of Longitudinal Data. Oxford Science, Oxford: Clarendon Press.Google Scholar
  7. 7.
    Hansen, L.-P. (1982). Large sample properties of generalized method of moment estimators. Econometrica, 50, 1029−1054.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Herbach, L. H. (1959). Properties of type II analysis of variance test. Ann. Math. Statist., 30, 939−959.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hsiao, C. (2003). Analysis of Panel Data. Cambridge, U.K.: University Press.Google Scholar
  10. 10.
    Jiang, J. & Zhang, W. (2001). Robust estimation in generalized linear mixed models. Biometrika, 88, 753−765.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    LaMotte, L. R. (1973). On non-negative quadratic unbiased estimation of variance components. J. Amer. Statist. Assoc., 68, 728−730.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    McCullagh, P. (1983). Qusilikelihood functions. Ann. Statist., 11, 59-67.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Mathew, T., Sinha, B. K., & Sutradhar, B. C. (1992). Nonnegative estimation of variance components in unbalanced mixed models with two variance components. J. Multivariate Anal., 42, 77−101.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Rao, R. P., Sutradhar, B. C., & Pandit, V. N. (2010). GMM versus GQL inferences in linear dynamic panel data models. Braz. J. Probab. Statist., to appear.Google Scholar
  15. 15.
    Searle, S. R. (1971). Linear Models. New York: John Wiley & Sons.Google Scholar
  16. 16.
    Sneddon, G. & Sutradhar, B. C. (2004). On semi-parametric familial-longitudinal models. Statist. Probab. Lett., 69, 369−379.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Sutradhar, B. C. (1988). Testing linear hypothesis with t error variable. Sankhya B: Indian J. Statist., 50, 175−180.zbMATHMathSciNetGoogle Scholar
  18. 18.
    Sutradhar, B. C. (1997). A multivariate approach for estimating the random effects variance component in one-way random effects model. Stat. Probab. Lett., 33, 333−339.CrossRefMathSciNetGoogle Scholar
  19. 19.
    Sutradhar, B. C. (2003). An overview on regression models for discrete longitudinal responses. Statist. Sci., 18, 377−393.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Sutradhar, B. C. (2004). On exact quasilikelihood inference in generalized linear mixed models. Sankhya B: Indian J. of Statist., 66, 261−289.MathSciNetGoogle Scholar
  21. 21.
    Sutradhar, B. C. & Farrell, P. J. (2007). On optimal lag 1 dependence estimation for dynamic binary models with application to asthma data. Sankhya B: Indian J. Statist., 69, 448−467.zbMATHMathSciNetGoogle Scholar
  22. 22.
    Thompson,W. A. Jr. (1962). The problem of negative estimates of variance components. Ann. Math. Statist., 33, 273−289.zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Verbeke, G. & Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data. New York: Springer.Google Scholar
  24. 24.
    Wedderburn, R. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika, 61, 439−447.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsMemorial UniversitySaint John’sCanada

Personalised recommendations