Advertisement

Overview of Linear Fixed Models for Longitudinal Data

  • Brajendra C. SutradharEmail author
Chapter
Part of the Springer Series in Statistics book series (SSS)

Abstract

In a longitudinal setup, a small number of repeated responses along with certain multidimensional covariates are collected from a large number of independent individuals. Let y yi1, …,y it , …,y iT i be T i ≥ 2 repeated responses collected from the ith individual, for i = 1, …, K, where K → ∞. Furthermore, let x it = (x it 1 , …,x it p ) be the p-dimensional covariate vector corresponding to y it , and β denote the effects of the components of xit it on y it . For example, in a biomedical study, to examine the effects of two treatments and other possible covariates on blood pressure, the physician may collect blood pressure for T i = T = 10 times from K = 200 independent subjects.

Keywords

Ordinary Little Square Generalize Little Square Repeated Response Ordinary Little Square Estimator Autocorrelation Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amemiya, T. (1985). Advanced Econometrics. Cambridge, MA: Harvard University Press.Google Scholar
  2. 2.
    Box, G. E. P. & Jenkins, G. M. (1970). Time Series Analysis Forecasting and Control. San Francisco: Holden-Day.Google Scholar
  3. 3.
    Diggle, P. J., Liang, K.-Y., & Zeger, S. L. (1994). Analysis of Longitudinal Data. Oxford Science. Oxford: Clarendon Press.Google Scholar
  4. 4.
    Kendall, M., Stuart, A., & Ord, J. K. (1983). The Advanced Theory of Statistics, Vol. 3, London: Charles Griffin.Google Scholar
  5. 5.
    Mardia, K. V., Kent, J. T. & Bibby, J. M. (1979). Multivariate Analysis. London: Academic Press.Google Scholar
  6. 6.
    Pearson, J. D., Morrell, C. H., Landis, P. K., Carter, H. B., & Brant, L. J. (1994). Mixedeffects regression models for studying the natural history of prostate disease. Statist. Med., 13, 587−601.CrossRefGoogle Scholar
  7. 7.
    Rao, C. R. (1973). Linear Statistical Inference and Its Applications. New York: John Wiley & Sons.Google Scholar
  8. 8.
    Seber, G. A. F. (1984). Multivariate Observations. New York: John Wiley & Sons.Google Scholar
  9. 9.
    Sneddon, G. & Sutradhar, B. C. (2004). On semi-parametric familial-longitudinal models. Statist. Probab. Lett., 69, 369−379.CrossRefMathSciNetGoogle Scholar
  10. 10.
    Srivastava, M. S. & Carter, E. M. (1983). An Introduction to Applied Multivariate Statistics. New York: North-Holland.Google Scholar
  11. 11.
    Sutradhar, B. C. & Kumar, P. (2003). The inversion of the correlation matrix for MA(1) process. Appl. Math. Lett., 16, 317−321.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Verbeke, G. & Lesaffre, E. (1999). The effect of drop-out on the efficiency of longitudinal experiments. Appl. Statist., 48, 363−375.zbMATHGoogle Scholar
  13. 13.
    Verbeke, G. & Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data. New York: Springer.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsMemorial UniversitySaint John’sCanada

Personalised recommendations