Advertisement

Introduction

  • Brajendra C. SutradharEmail author
Chapter
Part of the Springer Series in Statistics book series (SSS)

Abstract

Discrete data analysis such as count or binary clustered data analysis has been an important research topic over the last three decades. In general, two types of clusters are frequently encountered. First, a cluster may be formed with the responses along with associated covariates from the members of a group/family. These clustered responses are supposed to be correlated as the members of the cluster share a common random group/family effect. In this book, we refer to this type of correlation among the responses of members of same family as the familial correlation. Second, a cluster may be formed with the repeated responses along with associated covariates collected from an individual. These repeated responses from the same individual are also supposed to be correlated as there may be a dynamic relationship between the present and past responses. In this book, we refer to these correlations among the repeated responses collected from the same individual as the longitudinal correlations. It is of interest to fit a suitable parametric or semi-parametric familial and/or longitudinal correlation model primarily to analyze the means and variances of the data. Note that the familial and longitudinal correlations, however, play an important role in a respective setup to analyze the means and variances of the data efficiently.

Keywords

Generalize Linear Mixed Model Generalize Estimate Equation Repeated Response Well Linear Unbiased Prediction Hierarchical Generalize Linear Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armitage, P. (1971). Statistical Methods in Medical Research. Oxford: Blackwell.Google Scholar
  2. 2.
    Berkson, J. (1944). Application of the logistic function to bio-assay. J. Am. Statist. Assoc., 39, 357−365.CrossRefGoogle Scholar
  3. 3.
    Berkson, J. (1951). Why I prefer logits to probits. Biometrics, 7, 327−339.CrossRefGoogle Scholar
  4. 4.
    Breslow, N, E. & Clayton, D. G. (1993). Approximate inference in generalized linear mixed models. . J. Amer. Stat. Assoc., 88, 9−25.Google Scholar
  5. 5.
    Breslow, N. E. & Lin, X. (1995). Bias correction in generalized linear models with a single component of dispersion. Biometrika, 82, 81−92.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Chowdhury, M. R. I. & Sutradhar, B. C. (2009). Generalized quasilikelihood versus hierarchial likelihood inferences in generalized linear mixed models for count data. Sankhya B: Indian J. Stat., 71, 55−78.zbMATHMathSciNetGoogle Scholar
  7. 7.
    Crowder, M. (1995). On the use of a working correlation matrix in using generalized linear models for repeated measures. Biometrika, 82, 407−410.zbMATHCrossRefGoogle Scholar
  8. 8.
    Diggle, P. J., Heagety, P., Liang, K.-Y., & Zeger, S. L. (2002). Analysis of Longitudinal Data. Oxford Science. Oxford: Clarendon Press.Google Scholar
  9. 9.
    Diggle, P. J., Liang, K.-Y., & Zeger, S. L. (1994). Analysis of Longitudinal Data. Oxford Science. Oxford: Clarendon Press.Google Scholar
  10. 10.
    Dyke, G. V. & Patterson, H. D. (1952). Analysis of factorial arrangements when data are proportion. Biometrics, 8, 1−12.CrossRefGoogle Scholar
  11. 11.
    Fitzmaurice, G. M., Laird, N. M., & Rotnitzky, A. G. (1993). Regression models for discrete longitudinal responses. Statist. Sci., 8, 284−309.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Haberman, S. J. (1974). Log-linear models for frequency tables with ordered classifications. Biometrics, 36, 589−600.CrossRefMathSciNetGoogle Scholar
  13. 13.
    Hall, D. B., & Severini, T. A. (1998). Extended generalized estimating equations for clustered data. J. Amer. Statist. Assoc., 93, 1365−75.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Heagerty, P. J. (1999). Marginally specified logistic-normal models for longitudinal binary data. Biometrics, 55, 688−98.zbMATHCrossRefGoogle Scholar
  15. 15.
    Henderson, C. R. (1963). Selection index and expected genetic advance. In Statistical Genetics and Plant Breeding, National Research Council Publication No. 892, pp. 141−63. National Academy of Sciences.Google Scholar
  16. 16.
    Jiang, J. (1998). Consistent estimators in generalized linear mixed models. J. Amer. Statist. Assoc., 93, 720−729.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Jiang, J. & Zhang, W. (2001). Robust estimation in generalized linear mixed models. Biometrika, 88, 753−765.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Jowaheer, V., Sutradhar, B. C. & Sneddon, G. (2009). On familial Poisson mixed models with multi-dimensional random effects. J. Statist. Comp. Simul., 79, 1043−1062.zbMATHCrossRefGoogle Scholar
  19. 19.
    Jowaheer, V. & Sutradhar, B. C. (2002). Analysing longitudinal count data with overdispersion. Biometrika, 89, 389−399.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Kuk, A. Y. C. (1995). Asymptotically unbised estimation in generalized linear models with random effects. J. R. Stastist. Soc. B, 58, 619−678.Google Scholar
  21. 21.
    Lee, Y. & Nelder, J.A. (1996). Hierarchical generalized linear models. J. R. Statist. Soc. B,, 58, 619−678.zbMATHMathSciNetGoogle Scholar
  22. 22.
    Lee, Y. & Nelder, J.A. (2001). Hierarchical generalized linear models: A synthesis of generalized linear models, random-effect models and structured dispersions. Biometrika,, 88, 987−1006.zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Liang, K. Y. & Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73, 13−22.zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Lin, X. & N. E. Breslow (1996). Bias correction in generalized linear mixed models with multiple components of dispersion. J. Am. Statist. Assoc., 91, 1007−1016.zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    McCullagh, P. & J. A. Nelder (1983, 1989). Generalized Linear Models. Chapman and Hall, London.Google Scholar
  26. 26.
    Molenberghs, G. & Verbeke, G. (2005). Models for Discrete Longitudinal Data. Springer, New York.Google Scholar
  27. 27.
    Nelder, J. A. (1974). Log-linear models for contingency tables: A generalization of classical least squares. Appl. Statist., 23, 323−329.CrossRefMathSciNetGoogle Scholar
  28. 28.
    Neuhaus, J. M. (1993). Estimation efficiency and tests of covariate effects with clustered binary data. Biometrics, 49, 989−996.CrossRefGoogle Scholar
  29. 29.
    Pearson, J. D., Morrell, C. H., Landis, P. K., Carter, H. B., & Brant, L. J. (1994). Mixedeffects regression models for studying the natural history of prostate disease. Statist. Med., 13, 587−601.CrossRefGoogle Scholar
  30. 30.
    Plackett, R. L. (1981). The Analysis of Categorical Data. Griffin, London.Google Scholar
  31. 31.
    Prentice, R. L. & Zhao, L.P. (1991). Estimating equations for parameters in means and covariances of multivariate discrete and continuous responses. Biometrics, 47, 825−39.zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Schall, R. (1991). Estimation in generalized linear models with random effects. Biometrika, 78, 719−27.zbMATHCrossRefGoogle Scholar
  33. 33.
    Sneddon, G. & Sutradhar, B. C. (2004). On semi-parametric familial-longitudinal models. Statist. Probab. Lett., 69, 369−379.zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Sutradhar, B. C. (2003). An overview on regression models for discrete longitudinal responses. Statist. Sci., 18, 377−93.zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Sutradhar, B.C. (2004). On exact quasilikelihood inference in generalized linear mixed models. Sankhyā: Indian J. Statist., 66, 261−289.MathSciNetGoogle Scholar
  36. 36.
    Sutradhar, B. C. (2010). Inferences in generalized linear longitudinal mixed models. Canad. J. of Statist., 38, 174−196.zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Sutradhar, B. C. & Das, K. (1999). On the efficiency of regression estimators in generalized linear models for longitudinal data. Biometrika, 86, 459−65.zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Sutradhar, B. C. & Kumar, P. (2001). On the efficiency of extended generalized estimating equation approaches. Statist. Probab. Lett., 55, 53−61.zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Sutradhar, B. C. & Mukerjee, R. (2005). On likelihood inference in binary mixed model with an application to COPD data. Comput. Statist. Data Anal., 48, 345−361.zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Sutradhar, B. C. & Z. Qu (1998). On approximate likelihood inference in Poisson mixed model. Canad. J. Statist., 26, 169−186.zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Sutradhar, B. C. & Rao, R. P. (2003). On quasi-likelihood inference in generalized linear mixed models with two components of dispersion. Canad. J. Statist., 31, 415−435.zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Thall, P. F. & Vail, S. C. (1990). Some covariance models for longitudinal count data with overdispersion. Biometrics, 46, 657−71.zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Verbeke, G. & Lesaffre, E. (1999). The effect of drop-out on the efficiency of longitudinal experiments. Appl. Statist., 48, 363−375.zbMATHGoogle Scholar
  44. 44.
    Verbeke, G. & Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data. Springer, New York.Google Scholar
  45. 45.
    Waclawiw, M. A. & K.-Y. Liang (1993). Prediction of random effects in the generalized linear model. J. Am. Statist. Assoc., 88, 171−178.zbMATHCrossRefGoogle Scholar
  46. 46.
    Wedderburn, R. (1974). Quasilikelihood functions, generalized linear models and the Gauss-Newton method. Biometrika, 61, 439−447.zbMATHMathSciNetGoogle Scholar
  47. 47.
    Zhao, L. P. & Prentice, R. L. (1990). Correlated binary regression using a quadratic exponential model. Biometrika, 77, 642−48.CrossRefMathSciNetGoogle Scholar
  48. 48.
    Zhao, L. P., Prentice, R. L. & Self, S. G. (1992). Multivariate mean parameter estimation by using a partly exponential model. J. Roy. Statist. Soc. Ser. B, 54, 805−811.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsMemorial UniversitySaint John’sCanada

Personalised recommendations