Skip to main content

The Joule-Thomson Effect, Its Inversion and Other Expansions

  • Chapter
  • First Online:

Part of the book series: International Cryogenics Monograph Series ((ICMS))

Abstract

James Joule and William Thomson discovered the effect bearing their names and measured it at low pressures for air, nitrogen, oxygen, carbon dioxide, hydrogen and mixtures of air and carbon dioxide. Since “…the thermal effects experienced by air in rushing through small apertures” were discovered1, about 16 decades ago, the effect has been continuously examined, measured and studied. This elementary effect is the driving force that initiates, empowers and perpetuates the operation of the Linde-Hampson machines, the Joule-Thomson cryocoolers, liquefiers and refrigerators that utilize the throttling effect.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Joule, J.P. and Thomson, W., “On the thermal effects experienced by air in rushing through small apertures”, Philosophical Magazine, London, UK, ser. 4, Vol. 4, pp. 481–492, (1852).

  2. 2.

    Walas, S.W., Phase Equilibrium in Chemical Engineering, Butterworth Press, Boston, (1985).

  3. 3.

    Hirschfelder, J.O., Ewell, R.B. and Roebuck, J.R., “Determination of intermolecular forces from the Joule-Thomson coefficients”, Journal of Chemical Physics, Vol. 6, pp. 205–218, (April 1938).

  4. 4.

    Sobanski, R., “Application of the Beattie-Bridgeman equation in calculating the Joule-Thomson effect”, Bulletin de L’Académié Polonaise des Sciences, Vol. 29, No. 11–12, p. 621–627.

  5. 5.

    Ahlert, R.C. and Wenzel, L.A., Joule-Thomson effect in gas mixtures: the nitrogen-methane-ethane system, AIChE Journal, Vol. 15, No. 2, p. 256–263, 1969.

  6. 6.

    Yasuo Hirose, Tsuyoshi Kitazawa and Toshinobu Yoshida, “The Joule-Thomson expansion coefficient by formula manipulation”, Ind. Eng. Chem. Rev., Vol. 29, pp. 1555–1558, (1990).

  7. 7.

    Francis, P.G. and Luckhurst, G.R., “Joule-Thomson coefficients and the principle of corresponding states”, Trans. Faraday Soc., Vol. 59, pp. 667–672, (1962).

  8. 8.

    McClure, D.W., “The Joule-Thomson coefficient-a molecular interpretation”, American Journal of Physics, Vol. 39, pp. 238, (March, 1971).

  9. 9.

    Vortmeyer, D., “The Joule-Thomson effect of non polar gas mixtures at \( P \to 0 \). A theoretical interpretation of experiments”, (German), Kaltetechnik, Vol. 10, pp. 383, (1966).

  10. 10.

    Ayber, R., “Joule-Thomson effect in methane-hydrogen and ethylene-hydrogen mixtures”, V.D.I. Forschungsh., p. 511, (1965).

  11. 11.

    Gustafson, O., “On the Joule-Thomson effect for gas mixtures”, Physica Scipta, Vol. 2, pp. 7, (1970).

  12. 12.

    Gustafson, O., “On the Joule-Thomson effect for rare gases and binary mixtures”, Arkiv for Fysik, Vol. 40, No. 35, pp. 481–495, (1970).

  13. 13.

    Nain, V. and Aziz, R., “Prediction of adiabatic Joule-Thomson coefficient based on modern potentials for noble gases”, Canadian Journal of Chemistry, Vol. 54 (1978), pp. 2617–2627.

  14. 14.

    Sheludyakov, E.P., “Joule-Thomson effect and spread of sound”, Journal of Applied Mechanics and Technical Physics, Vol. 9, No. 1, p. 128, (January-February 1968).

  15. 15.

    Shapiro, A.H., “The Dynamics and Thermodynamics of Compressible Fluid Flow” (1953), Vol. 2, Ronald Press, New York.

  16. 16.

    Wisniak, J. and Avraham, H., “Possibility of synergism in the Joule-Thomson effect”, Ind. Eng. Chem. Res., (1996), Vol. 35, pp. 844–850.

  17. 17.

    Wisniak, J., “On the Joule-Thomson coefficient of gas mixtures”, Indian Journal of Chemical Technology, (1994), Vol. 1, pp. 1–6.

  18. 18.

    Sobanski, R. and Kozak, T., “Joule-Thomson effect for mixtures of refrigerants”, Sci. Technol. Froid, Proceedings of the Meeting of Commission B1, Hertzlia, Israel, (1990), pp. 163–168.

  19. 19.

    Walstrom, P.L., “Joule-Thomson effect and internal convection heat transfer in turbulent He II flow”, Cryogenics, Vol. 28, March, p. 151, (1988).

  20. 20.

    Huang, B.J., “Joule-Thomson effect in liquid He II”, Cryogenics, Vol. 26, August-September, pp. 475–477, (1986).

  21. 21.

    Astroshchenko, L.S. and Voronina, S.M., “Joule-Thomson effect in magnetic field”, translated from Izvestiya VUZ, Fizika, Vol. 14, No. 5, pp. 118–119, May 1971. The translation was published by Springer New York, as Russian Physics Journal, Vol. 14, No. 5, May 1971, pp. 664–665, December, 2004.

  22. 22.

    Tropinin, V.N., “Joule-Thomson effect in paramagnetics”, translated by Springer New York, as Russian Physics Journal, Vol. 11, No. 7, July 1968, pp. 67–68, December, 2004.

  23. 23.

    Hoxton, L.G., “The Joule-Thomson effect in air at moderate temperatures and pressures”, Physical Review, Vol. 13, No. 6, p. 438–479, (1919).

  24. 24.

    Roebuck, J.R., “The Joule-Thomson effect in air. Second Paper”, Proceedings of the American Academy, Vol. 64, pp. 287–334, (1934).

  25. 25.

    Worthing, A.G., “Some thermodynamic properties of air and carbon dioxide”, Physical Review, Vol. 32, No. 4, pp. 217–267.

  26. 26.

    Roebuck, J.R., “The Joule-Thomson effect in air”, Proceedings of the American Academy, Vol. 60, pp. 537–596, (1925).

  27. 27.

    Brillantinov, N.A., “Measurement of the Joule-Thomson effect of air and oxygen at low pressures”, Zhur. Tekh. Fiz., Vol. 18, p. 1113, (1948), cited in Chem. Abstr, Vol. 50, p. 4301a.

  28. 28.

    Roebuck, J.R. and Osterberg, H., “The Joule-Thomson effect in helium”, Physical Review, Vol. 43, pp. 60, (1933).

  29. 29.

    Zelmanov, J.L., “Joule-Thomson Effect in Helium at Low Temperatures”, Journal of Physics, (USSR), Vol. 3, pp. 43, (1940).

  30. 30.

    Roebuck, J.R. and Osterberg, H., “The Joule-Thomson effect in argon”, Physical Review, Vol. 46, pp. 785–790, (November 1934).

  31. 31.

    Pattee, E.C. and Brown, G.G., “Thermal properties of hydrocarbons under pressure, I. Pentane and paraffinic naptha”, Ind. Eng. Chem., Vol. 26, p. 511, (1934).

  32. 32.

    Roebuck, J.R. and Osterberg, H., “The Joule-Thomson effect in nitrogen”, Physical Review, Vol. 48, pp. 450–457, (September 1935).

  33. 33.

    Head, J.F., “Joule-Thomson expansion for mixtures”, Ph.D. Thesis, Imperial College, University of London, London, 1960.

  34. 34.

    R.C. King, R.C. and Potter, J.M., “An axial-flow porous plug apparatus”, Trans. A.S.M.E. (Am. Soc. Mech. Eng.), Ser. B, Vol. 84, p. 180, (1962).

  35. 35.

    Stockett, A.L. and Wenzel, L.A., “Joule-Thomson effect for nitrogen-ethane mixtures”, Amer. Inst. Chem. Eng. (A.I.Ch.E.), Vol. 10, p. 557, (1964).

  36. 36.

    Sabnis, S.T., “Joule-Thomson effect for ternary mixtures”, Ph.D. Thesis, Lehigh University, Bethlehem, Penna., 1967.

  37. 37.

    Ahlert, R.C. and Wenzel, L.A., “Joule-Thomson coefficient in gas mixtures”, Amer. Inst. Chem. Eng. (A.I.Ch.E.), Vol. 15, p. 256, (1969).

  38. 38.

    Kennedy, E.R., et al., “Phase equilibria in hydrocarbon systems, XIV. Joule-Thomson coefficients of n-butane and n-pentane”, Ind. Eng. Chem., Vol. 28, p. 718, (1936).

  39. 39.

    Sage, B.H. and Lacey, W.N., “Phase equilibria in hydrocarbon systems. Thermodynamic properties of isobutane”, Ind. Eng. Chem., Vol. 30, p. 673, (1938).

  40. 40.

    Sage, B.H., et al., “Phase equilibrium in hydrocarbon systems. Joule-Thomson coefficient of propane”, Industrial and Engineering Chemistry, May 1936, Vol. 28, No. 5, pp. 601–604.

  41. 41.

    Sage, B.H., Webster, D.C. and Lacey, W.N., “Phase equilibria in hydrocarbon systems, XVIII. Thermodynamic properties of ethane”, Ind. Eng. Chem., Vol. 29, p. 658, (1937).

  42. 42.

    Budenholzer, R.A., Sage, B.H. and Lacey, W.N., “Phase equilibria in hydrocarbon systems. Joule-Thomson coefficient of methane”, Ind. Eng. Chem., Vol. 31, p. 369, (1939).

  43. 43.

    Roebuck, J.R., Murrell, T.A. and Miller, E.E., “The Joule-Thomson effect in carbon dioxide”, Journal of American Chemical Society, Vol. 64, p. 400–411, (February 1942).

  44. 44.

    Sage, B.H., Botkin, D.F. and Lacey, W.N., “The Joule-Thomson effect for two natural gases”, Trans. Am. Inst. Mining and Metal Eng., Vol. 151, p. 216, (1943).

  45. 45.

    Johnston, L.H., et al., “Joule-Thomson effect in hydrogen at liquid air and at room temperature”, Journal of American Chemical Society, Vol. 68, p. 2362–2373, (1946).

  46. 46.

    Koeppe, W., “Der integral Thomson-Joule-effect von wasserstoff bei tiefen temperaturen und drucken bis zu 120 atm”, (“The integral Joule-Thomson effect for hydrogen at low temperatures and pressures”, in German), Kaltetechnik, Vol. 2, No. 9, pp. 275–280, (1956).

  47. 47.

    Johnston, L.H., et al., “Joule-Thomson effect in deuterium at liquid air and at room temperature”, Journal of American Chemical Society, Vol. 68, p. 2373–2377, (1946).

  48. 48.

    Schmidtke, R.A., “Joule-Thomson coefficients for freon-12”, J. Wash. Acad. Sci, Vol. 46, p. 137, (1956).

  49. 49.

    Gladun, A., “The Joule-Thomson effect in neon”, Cryogenics, Vol. 4, p. 31–33, (1966).

  50. 50.

    Runge, R., “The Joule-Thomson effect in neon at low temperatures”, Proceedings of The Second International Cryogenic Conference (ICEC 2), pp. 281–284, Brighton, UK, (May 7–10, 1968), ILIFFE Science and Technology Publications, Ltd., Guilford, Surrey, UK.

  51. 51.

    Roebuck, J.R. and Osterberg, H., “The Joule-Thomson effect in mixtures of helium and nitrogen”, Journal of American Chemical Society, Vol. 60, pp. 341, (1938).

  52. 52.

    Koeppe, W., “Zum Thomson-Joule effeckt von gasen und gasgemischen”, (“The Joule-Thomson effect of pure gases and gas mixtures”, in German), Kaltetechnik, Vol. 11, pp. 363–369, (1959).

  53. 53.

    Koeppe, W., “Zum Thomson-Joule effeckt von gasen und gasgemischen”, (“The Joule-Thomson effect of pure gases and gas mixtures”, in German), Ph.D. Thesis, Humboldt Universitat, Berlin, (1959).

  54. 54.

    H. Hartmann, R. Mann and A. Newmann, “Ein beigrag zum Joule-Thomson effekt von stickstoff-wasserstoff-gemischen”, Ber. Bunsenges, Phys. Chem., Vol. 73, p. 492, (1969).

  55. 55.

    Gladun, von A., “Joule-Thomson-effekt von stickstoff-wasserstoff-gemischen und einem methan-argon-stickstoff-wasserstoff-gemisch”, Z. phys. Chemie, Leipzig, Vol. 247, (1971), No. 3/4, p. 178–184.

  56. 56.

    Grossmann, E.D., “Joule-Thomson coefficients for a nitrogen-carbon dioxide mixture”, Ph.D. Thesis, University of Pennsylvania, Philadelphia, PA., (1966).

  57. 57.

    Roebuck, J.R. and Osterberg, H., “The Joule-Thomson effect in mixtures of helium and argon”, Journal of Chemical Physics, Vol. 8, p. 627, (1940).

  58. 58.

    Strakey, J.P., JR., “The Joule-Thomson coefficients of argon-carbon dioxide mixtures”, Ph.D. Thesis, Yale University, New Haven, Connecticut, (1970).

  59. 59.

    Strakey, J.P., JR., Bennet, C.O. and Dodge, B.F., “Joule-Thomson coefficients of argon-carbon dioxide mixtures”, Journal of A.I.Ch.E., Vol. 20, No. 4, p. 803–814, (July 1974).

  60. 60.

    Budenholzer, R.A., Sage, B.H. and Lacey, W.N., “Phase equilibria in hydrocarbon systems. Joule-Thomson coefficient of gaseous mixtures methane and ethane”, Industrial and Engineering Chemistry, Vol. 31, No. 10, pp. 1288–1292, (1939).

  61. 61.

    Budenholzer, R.A., Sage, B.H. and Lacey, W.N., “Phase equilibria in hydrocarbon systems. Joule-Thomson coefficient for gaseous mixtures and n-butane”, Industrial and Engineering Chemistry, Vol. 32, pp. 384–387, (1940).

  62. 62.

    Budenholzer, R.A., Botkin, D.F., Sage, B.H. and Lacey, “Phase equilibria in hydrocarbon systems. Joule-Thomson coefficient in the methane-propane systems”, Industrial and Engineering Chemistry, Vol. 34, p. 878, (1942).

  63. 63.

    Shagal, P.N., “Determination of the Joule-Thomson effect for the propylene/carbon dioxide systems”, Ph.D. Thesis, Imperial College, University of London, London, (1959).

  64. 64.

    Gladun, A., “The Joule-Thomson effect in neon-helium mixtures”, Cryogenics, Vol. 7, No. 10, pp. 286–288, (1967).

  65. 65.

    Charnley, A., Isles, G.L. and Townley, J.R., “The direct measurement of the isothermal Joule-Thomson coefficient for gases”, Proc. Roy. Soc. Ser. A., Vol. 218, p. 133, (1953).

  66. 66.

    Charnley, A., Rowlinson, J.S., Sutton, J.R. et al., “The isothermal Joule-Thomson coefficient of some binary gas mixtures”, Proc. Roy. Soc. Ser. A., Vol. 230, p. 354–358, (1955).

  67. 67.

    Ishkin, I.P. and Kaganer, M.G., “Investigation of the thermodynamic properties of air and nitrogen at low temperatures under pressure. I. Determination of the Joule-Thomson effect of air and nitrogen”, Soviet Phys. Tech. Phys., Vol. 1, p. 2255, (1957).

  68. 68.

    Ishkin, I.P. and Rogovaya, I.A., “The thermodynamic properties of argon and of argon-nitrogen mixtures at low temperatures”, Zhur. Fiz. Khim., Vol. 31, p. 410, (1957).

  69. 69.

    Bolshakov, P.E., Gelperin, I.L. and Ostronov, M.G., “The Joule-Thomson effect in gas mixtures at low temperatures. I. Nitrogen hydrogen mixture containing 8.8 % nitrogen”, Russ. J. Phys. Chem., Vol. 40, p. 1025, (1966).

  70. 70.

    Bolshakov, P.E., Gelperin, I.L. and Ostronov, M.G., “The Joule-Thomson effect in gas mixtures at low temperatures. III. Mixture of nitrogen hydrogen mixture containing 9.9 % nitrogen”, Russ. J. Phys. Chem., Vol. 41, p. 353, (1967).

  71. 71.

    Mather, A.E., Katz, D.L. and Powers, J.E., “Direct determination of the effect of pressure on the enthalpy of nitrogen”, Transaction of the Faraday Society, Vol. 64, p. 2919–2946, (1968).

  72. 72.

    Mather, A.E., Katz, D.L. and Powers, J.E., “The direct determination of the effect of pressure on the enthalpy of a mixture of methane and propane”, Journal of A.I.Ch.E., Vol. 15, No. 1, p. 111–116, (January 1969).

  73. 73.

    Bonacina, C. and Cavallini, A., “Isothermal expansion coefficient of mixtures of N2 + CH4 + C2H4”, Proceedings of the Eighth Symposium of Thermophysical Properties, Vol. 1, p. 349–357, ASME Press, New York, 1981.

  74. 74.

    Mather, A.E., “The measurement and prediction of the effect of pressure on enthalpy”, Ph.D. Thesis, University of Alberta, Edmonton, Alberta, Canada, (1975).

  75. 75.

    Ng, H-J. and Mather, A.E. “Isothermal Joule-Thomson coefficient in mixtures of methane and carbon dioxide”, Journal of Chemical and Engineering Data, Vol. 21, No. 3, p. 291–295, (1976).

  76. 76.

    Barnett, E.S. “Compressibility determination without volume measurements”, Journal of Applied Mechanics, Vol. 3, p. A136–A140, 1936.

  77. 77.

    Miller, J.E., Brandt, L.W. and Stroud, I. “Compressibility factors for helium and helium-nitrogen mixtures”, Report of investigation No. 5845, Bureau of Mines, U.S. Department of Interior, (1961).

  78. 78.

    Mueller, W.H., Leland, T.W. and Kobayashi, R., “Volumetric properties of gas mixtures at low temperatures and high pressures by the Burnett method: hydrogen-methane system”, Journal of A.I.Ch.E., Vol. 7, No. 2, p. 267–272, (June 1961).

  79. 79.

    Canfield, F.B., Leland, T.W. and Kobayashi, R., “Volumetric behavior of gas mixtures at low temperatures by the Burnett method: the helium-nitrogen system”, Advances in Cryogenic Engineering, Vol. 8, p. 146–157, Plenum Press, New York, (1963).

  80. 80.

    Michels, A., Wassenaar, T., Wolkers, G.J. and Dawson, J., “Thermodynamic properties of xenon as a function of density up to 520 Amagat and as a function of pressure up to 2800 atmospheres, at temperatures between 0 C and 150 C”, Physica, Vol. 22, p. 17, (1957).

  81. 81.

    Trappeniers, N.J., et al., “Isotherms and thermodynamic properties of krypton at temperatures between 00 and 1500 C and at densities up to 620 Amqagat”, Physica, Vol. 32 (1966), pp. 1503–1520.

  82. 82.

    Prydz, R., “The experimental PVT surface and corresponding thermodynamic properties of fluorine”, Ph.D. Dissertation, University of Colorado, Boulder, CO, U.S.A., (August 1970).

  83. 83.

    Prydz, R. and Straty, G.C., “PVT Measurements, virial coefficients and Joule-Thomson inversion curve for fluorine”, Journal of Research of the National Bureau of Standards-A, Physics and Chemistry, Vol. 74A, No. 6, November–December, (1970), pp. 747–760.

  84. 84.

    Bozhko, Yu.G., et al., “Study of the integral Joule-Thomson effect in helium-4”, Proceedings of the Low Temperature Engineering and Cryogenic Conference, (1990), LTEC (90), edited by Burton and Richardson, University of Southampton, Southampton, UK, (1990), paper 10.4.

  85. 85.

    Johnston, L.H., et al., “Joule-Thomson effect in deuterium at liquid air and at room temperatures”, Journal of American Chemical Society, Vol. 68, pp. 2373–2377, (1946).

  86. 86.

    Schluender, E.V. and Zelmin, H.A., “A method of calculation of the integral Thomson-Joule effect of binary mixtures”, (German), Kaltetechnik, Vol. 18, No. 10, pp. 388, (1966).

  87. 87.

    Zemlin, H., “Experimental determination of integral Joule-Thomson effect of pure gases and binary mixtures”, (in German), Chem. Ing. Tech., (1971), Vol. 43, pp. 1110–1115.

  88. 88.

    Zemlin, H., “Relation between the integral Joule-Thomson effect of gas mixtures and the heat of mixing and their theoretical determination”, (German), Chem. Ing. Tech., (1972), Vol. 44, pp. 601–606.

  89. 89.

    Hendricks, R.C., Peller, I.C. and Baron, A.K., “Joule-Thomson inversion curves and related coefficients for several simple fluids”, NASA, Technical Note D-6807, (1972).

  90. 90.

    Thirumaleshvar, M. and Richardson, R.N., “Enhancement of J-T cooling using multi-component mixtures”, Cryogenics, Vol. 34, pp. 123–126, (1994), Supplement, Proceedings of the 15th International Cryogenic Engineering Conference, (ICEC-15).

  91. 91.

    Gier, H.L., “Production of superfluid helium using a Joule-Thomson expander”, Cryogenic Optical Systems and Instrumentation, Proceedings of the meeting, San-Diego, CA, August 23–24, (1984), (A1986-1534404-19), Bellingham, WA.., SPIE-The Institute for Optical Engineering, (1985), pp. 238–249.

  92. 92.

    Van Sciver, S.W., Welton, S.J., et al., “Design, development and testing of the cryogenic system for the 45-T hybrid magnet”, Advances in Cryogenic Engineering, edited by P. Kittel, Plenum Press, New York, (1996), Vol. 41, pp. 1273–1282.

  93. 93.

    Welton, S.J., Van Sciver, S.W., et al., “Design, development and testing of the JT refrigerators for the 45-T hybrid magnet”, Advances in Cryogenic Engineering, edited by P. Kittel, Plenum Press, New York, (1996), Vol. 41, pp. 1283–1289.

  94. 94.

    Van Sciver, S.W., Helium Cryogenics, The International Cryogenic Monographs Series, Plenum Press, New York, (1986), pp. 315–317.

  95. 95.

    Rybolt, T.R., “The gas-solid Joule-Thomson Effect”, Ph.D. Thesis, Georgia Institute of Technology, Georgia, (1981).

  96. 96.

    Pierotti, R,A. and Rybolt, T.R., “Statistical thermodynamics of aerosols and the gas-solid Joule-Thomson Effect”, Journal of Chemical Physics, Vol. 80, pp. 3826, (1984).

  97. 97.

    Rybolt, T.R., “Investigation of the gas-solid Joule-Thomson effect for argon, nitrogen and carbon dioxide powder aerosol systems”, Journal of Physical Chemistry, Vol. 88, No. 11, pp. 2398–2404, (1984).

  98. 98.

    Pierotti, R,A. and Rybolt, T.R., “The gas-solid Joule-Thomson effect”, Pure and Applied Chemistry, Vol. 61, No. 11, pp. 1921–1926, (1989).

  99. 99.

    Rybolt, T.R., “Virial modeling of gas-solid Joule-Thomson effect for argon carbon aerosol”, Journal of A.I.Ch.E., Vol. 35, No. 12, pp. 2029–2032, (December, 1989).

  100. 100.

    Pierotti, R.A. and Rybolt, R., “Method for utilizing gas-solid dispersions in the thermodynamic cycles for power generation and refrigeration”, US Patent No.4,321,799, filed March 28, 1980, patented March 30, 1982, Georgia Tech Research Institute, Atlanta, GA.

  101. 101.

    Porter, A.W., “On the inversion points for a fluid passing through a porous plug and their use in the testing proposed equations of state”, Philosophical Magazine, Vol. 6, pp. 554, (1906).

  102. 102.

    Porter, A.W., “On the inversion points for a fluid passing through a porous plug and their use in the testing proposed equations of state. Part II. An examination of experimental data.”, Philosophical Magazine, Vol. 16, pp. 891–897, (1910).

  103. 103.

    Hendricks, R.C., et al., “Survey of heat transfer to near-critical fluids”, Advances in Cryogenic Engineering, Vol. 15, edited by K.D. Timmerhaus, Plenum Press, New York, 1970, pp. 197–234.

  104. 104.

    Colazo, A.V., Du Silva, F.A., Muller, E.A. and Olivera-Fuentes, C, “Joule-Thomson inversion curve and the supercritical parameters of the equation of state”, Latin American Applied Research, (1992), Vol. 22, pp. 135–147.

  105. 105.

    Koeppe, W., “On the inversion curve at low temperature and the theorem of corresponding states”, Proceedings of the 10th International Congress on Refrigeration, pp. 156–163, Copenhagen, Pergamon, New York, (1960).

  106. 106.

    Kamatsevich, L.V., et al., “The entropy-temperature diagram of He-3”, Soviet Journal of Low Temperature Physics, Vol. 13, issue 12, December 1987, pp. 710–711.

  107. 107.

    Maytal, B-Z., “Helium-3 Joule-Thomson inversion curve”, Cryogenics, (1995), Vol. 36, No. 4, pp. 271–274.

  108. 108.

    Saygin, H. and Sisman, A., “Joule-Thomson coefficients of quantum ideal-gases”, Applied Energy, Elsevier Science Publisher, Vol. 70, Number 1, September 2001, pp. 49–57.

  109. 109.

    Gunn, R.D., Chueh, P.L. and Prausnitz, J.M., “Inversion temperatures and pressures for cryogenic gases and mixtures”, Cryogenics, Vol. 6, p. 324–329, (1966).

  110. 110.

    Sreedhar, R. and Sreedhar, A.K., “Joule-Thomson cooling with binary mixtures”, Infrared Physics and Technology, Vol. 39, (1998), pp. 451–455.

  111. 111.

    Nichita, D.V. and Leibovici, C.F., “Calculation of Joule-Thomson inversion curves for two-phase mixtures”, Fluid Phase equilibria, Vol. 246, (2006), pp. 167–176.

  112. 112.

    Witkowski, A.W., “Sur le refroidissement de l’air pur détente irrÕversible”, Bull. Acad. Sci. Cracow, pp. 282–295, (July 1898).

  113. 113.

    Wisniak, J., et al., “On the Joule-Thomson effect inversion curve”, Thermodynamica Acta, Vol. 286 (1996), pp. 33–40.

  114. 114.

    Hahle, S., “The Joule-Thomson effect in natural gases”, (in German), Energietechnik, Vol. 22, No. 2, pp. 51–55, (1972).

  115. 115.

    Miller, D.G., “Joule-Thomson Inversion curve, corresponding states and simpler equation of state”, Industrial and Engineering Chemistry, Fundamentals, Vol. 9, No. 4, pp. 585–589, (1970).

  116. 116.

    Bursik, J.W., “An envelope characteristics of the inversion curve in the \( Z,\;{P_R} \) plane”, Journal of Industrial and Chemistry Engineering, Fundamentals, Vol. 10, No. 4, pp. 644–646, (1971).

  117. 117.

    Nelson, L.C. and Obert, E.F., “Generalized PvT properties of gases”, Transaction of ASME, October 1954, pp. 1057–1066.

  118. 118.

    Heyes, D.M. and Llaguno, C.T., “Computer simulation and equation of state study of the Boyle and inversion temperature of a simple fluid”, Chemical Physics, Vol. 168, (1992), pp. 61–68.

  119. 119.

    Breitenstein, T. and Lustig, R., “Boyle temperatures, Joule-Thomson inversion temperatures and critical points of highly symmetrical multi-center Lennard-Jones molecules”, Journal of Molecular Liquids, Vol. 98–99, (2002), pp. 261–282.

  120. 120.

    Maytal, B-Z., “On the differential and integral inversion states of the Joule-Thomson effect and their interrelation”, Cryocoolers 14, ICC Press, Boulder, Colorado, 2007, pp. 469–476.

  121. 121.

    Holleran, E., “The intersection of the inversion curve and the unit compressibility line”, Journal of Industrial and Chemistry Engineering, Fundamentals, Vol. 13, No. 3, pp. 297–298, (1974).

  122. 122.

    Bursik, J.W., “Boyle points, UC and compressibility curves”, Journal of Industrial and Chemistry Engineering, Fundamentals, Vol. 13, No. 3, pp. 298, (1974).

  123. 123.

    Angus, S., “Unit compressibility curve”, Journal of Industrial and Chemistry Engineering, Fundamentals, Vol. 14, No. 2, pp. 142, (1975).

  124. 124.

    Holleran, E., “Unit compressibility curve”, Journal of Industrial and Chemistry Engineering, Fundamentals, Vol. 14, No. 2, pp. 142, (1975).

  125. 125.

    Jacob, M., “Die Inversionskurve des differentialen Thomson-Joule-effect der gase”, Physikaaalische Zeitschrift, Vol. 22, No. 3, pp. 65–69, (February 1921).

  126. 126.

    Maytal, B-Z. and Shavit, A., “On the Joule-Thomson integral inversion curves of helium-3, helium-4 and hydrogen”, Proceedings of the 16th International Cryogenic Engineering Conference, (ICEC-16), Kytakyushu, Japan, (May 20–24, 1996), Elsevier Science Press, Part 1, pp. 635–638, (1997).

  127. 127.

    Maytal, B-Z. and Shavit, A., “On the Joule-Thomson integral inversion curves of quantum gases”, Cryogenics, Vol. 37, No. 1, p. 33–38, (1997).

  128. 128.

    Koeppe, W., “Bemerkungen zur inversionskurve”, (“Some notes to the inversion curve”, in German), Kaltetechnik, Vol. 14, pp. 399–403, (1962).

  129. 129.

    Jones, C., Proceedings of the SPE European Petroleum Conference, October 16–19, 1988, pp. 423–431.

  130. 130.

    Backer, A.C., Proceedings of the SPE European Petroleum Conference, October 21–24, 1990, pp. 217–230.

  131. 131.

    Kortekaas, W.G., et al., “Joule-Thomson expansion of high-pressure-high-temperature gas condensates”, Fluid Phase Equilibria, Vol. 139, (1997), pp. 205–218.

  132. 132.

    Maytal, B-Z., and Van Sciver, S.W., “Characterization of coolants for Joule-Thomson cryocoolers”, Proceedings of the 6th International Cryocoolers Conference, Vol. 1, pp. 245–256, Plymouth, Massachusetts, (October 25–26, 1990), issued January 1991.

  133. 133.

    Maytal, B-Z. and Pfotenhauer, J., “Integral Joule-Thomson Inversion curve by the Peng-Robinson equation of state”, Proceedings of the Tenth Intersociety Cryogenic Symposium, AIChE Spring National Meeting, Houston, Texas, (20–23 March 1995), pp. 30–45.

  134. 134.

    Berthelot, D., “Sur un point remarquuable en relation avec le phenomene de Joule et Kelvin”, C.R.C. Acad. Sci., Vol. 130, pp. 1379–1381, (1900).

  135. 135.

    Hampson, W., “Improvements relating to the progressive refrigeration of gases”, British Patent 10,165, submitted May 23, 1895, patented March 25, 1896.

  136. 136.

    Linde, C., “Process and apparatus for liquefying gases or gaseous mixtures, and for producing cold, more particularly applicable for separating oxygen from atmospheric air”, British Patent 12,528, submitted June 28, 1895, patented May 16, 1896.

  137. 137.

    Linde, C., “Verfahren zur verflussigung atmospharischer luft oder anderer gase”, German Patent 88,824, submitted June 5, 1895, patented September 29, 1896.

  138. 138.

    Linde, C., “Maschine zur erzielung niedrigster temperaturen, zur gasverflussigung und zur mechanischen trennung von gasgemischen”, Zeitschrift fur die gesammteKalte-Industrie, Vol. 2, pp. 23–29, (1897).

  139. 139.

    Van der Waals, J.D., “The cooling of a current of gas by sudden change of pressure”, Proc. Sect. Sci. Kon. Acad. Wetenschap. (Amsterdam), Vol. 2, pp. 379–389, (1900).

  140. 140.

    Olszewski, K., “Temperature of inversion of the Kelvin effect of hydrogen”, Philosophical Magazine, Vol. 6, No. 3, pp. 535–540, (1902).

  141. 141.

    Olszewski, K., “Temperature of inversion of the Joule-Kelvin effect of air and nitrogen. Preliminary communication”, Philosophical Magazine, Vol. 6, No. 13, pp. 722–724, (1907).

  142. 142.

    Dilay, G.W., “Calculation of Joule-Thomson inversion curves and isenthalps from equations of state”, Engineering Thesis, The University of Calgary, Alberta, Canada, (1984).

  143. 143.

    Dilay, G.W. and Heldemann, R.A., “Calculation of the Joule-Thomson inversion curve from the equation of state”, Journal of Industrial and Engineering Chemistry, Fundamentals, Vol. 25, No. 1, pp. 152–158, (1986).

  144. 144.

    Juris, K. and Wenzel, L.A., “A study of inversion curves”, Journal of A.I.Ch.E., Vol. 18, No. 4, pp. 684–688, (July 1972).

  145. 145.

    Feroiu, V. and Geana, D., “Computation of the Joule-Thomson Inversion curves from cubic generalized equation of state”, (Rumanian), Revista de Chimie, (Bucharest), Vol. 40, No. 11, pp. 865–869, (1989).

  146. 146.

    Geana, D. and Feroiu, V., “Calculation of the Joule-Thomson Inversion curves from a general cubic equation of state”, Fluid Phase Equilibria, Vol. 77, pp. 121–132, (September 15, 1992).

  147. 147.

    Najjar, Y.S.H., Al-Beirutty, M.H. and Ismail, M.S., “Two-constant equation of state for accurate prediction of the Joule-Thomson Inversion curve for air in cryogenic applications”, Cryogenics, Vol. 33, No. 2, pp. 169–174, (1993).

  148. 148.

    Colina. C.M. and Olivera-Fuentes, C, “Prediction of the Joule-Thomson inversion curve of air from cubic equation of state”, Cryogenics, Vol. 38, No. 7, (1998), pp. 721–728.

  149. 149.

    Colina, C. and Muller, E.A., “Joule-Thomson inversion curves in molecular simulation”, Molecular Simulation, Vol. 19, pp. 237–246, (1997).

  150. 150.

    Colina, C. and Muller, E.A., “Molecular simulations of Joule-Thomson inversion curves”, International Journal of Thermophysics, Vol. 20, pp. 229–235, (1999).

  151. 151.

    Vrabec, J., et al., “Prediction of Joule-Thomson inversion curves for pure fluids and one mixture by molecular simulation”, Cryogenics, Vol. 45, pp. 253–258, (2005).

  152. 152.

    Chacin, A., et al., “Molecular simulation of Joule-Thomson inversion curve of carbon dioxide”, Physical Chemistry and Chemical Physics, Vol. 165, pp. 147–155, (1999).

  153. 153.

    Colina, C., et al., “Accurate CO2 Joule-Thomson inversion curve by molecular simulations”, Fluid Phase Equilibria, Vol. 202, pp. 253–262, (2002).

  154. 154.

    Kristof, T., et al., “Molecular simulation of the Joule-Thomson inversion curve of the hydrogen sulphide”, Molecular Physics, Vol. 103, pp. 537–545, (2005).

  155. 155.

    Vrabec, J., et al., “Joule-Thomson inversion curves of mixtures by molecular simulation in comparison to advanced equations of state: natural gas as an example”, Fluid Phase Equilibria, Vol. 258, pp. 34–40, (2007), also: arXiv:0904.3663v1 [physics.chem-ph].

  156. 156.

    Meissner, von W., “Der einfluss son anflangsdruck und vorkuhltemperatur bei der verflussigung des wasserstoffs”, Zeitschrift fur Physik, Vol. 18, pp. 12–25, (1923).

  157. 157.

    Woolley, H.W., Scott, R.B. and Brichwedde, F.G., Compilation of Thermal Properties of Hydrogen in its Various Isotopic and Ortho-Para Modifications, NIST (formerly NBS) Research Report RP1932, Vol. 41, pp. 379–475, (November 1948).

  158. 158.

    Din, F., (editor), Thermodynamic Functions of Gases: Methane, Nitrogen and Ethane, Vol. 3, Butterworth Publication, London, U.K., (1961).

  159. 159.

    Schultze, F.A., “Die Umkehrkurve des Joule-Thomson-Effect fur luft”, (“The inversion curve of the Joule-Thomson-effect for air”, in German), Annalen der Physik, Vol. 49, pp. 585–593, Leipzig, Germany, (1916).

  160. 160.

    Jacob, M., “Forschungsarb auf d.”, Gebiete des Ingenieurwesens, Vol. 202, pp. 19, (1917).

  161. 161.

    Din, F., (editor), Thermodynamic Functions of Gases: Air, Acetylene, Ethylene, Propane and Argon, Vol. 2, Butterworth Publication, London, U.K., (1956).

  162. 162.

    Novak, J., “Curves of inversion of the Joule-Thomson effect”, Sb. Ved. Vys. Sk. Chemicotechnol. Padublice, (Czechoslovakia), Vol. 14, No. 2, pp. 21–35, (1966).

  163. 163.

    Gosman, A.I., McCarty, R.D. and Hust, J.G., Thermodynamic Properties of Argon from Triple Point to 300 K at Pressures to 1000 Atmospheres, National Standard Reference Data Series, NIST (formerly NBS), Report NSRDS-NBS 27, Washington D.C., (March 1969).

  164. 164.

    Pfenning, D.B. and Canfield, F.B., “Thermodynamic properties of the helium-nitrogen system”, Journal of Chemical and Engineering Data, Vol. 10, No. 1, pp. 9–12, (January 1965)

  165. 165.

    McCarty, R.D., Thermodynamic Properties of Helium-4 from 2 to 1,500 K at Pressures to 1000 Atmospheres, NIST (formerly NBS), U.S. Department of Commerce, Technical Note 631, (1972).

  166. 166.

    Din, F., (editor), Thermodynamic Functions of Gases: Ammonia, Carbon dioxide and Carbon Monoxide, Vol. 1, Butterworth publication, London, U.K., (1956).

  167. 167.

    Prydz, R. and Timmerhaus, K.D., “The thermodynamic properties of deuterium”, Advances in Cryogenic Engineering, Vol. 13, p. 384–396, (1968).

  168. 168.

    Runge, R., “The Joule-Thomson effect in neon at low temperatures”, Proceedings of the Second International Cryogenic Conference (ICEC 2), pp. 281–284, Brighton, UK, (May 7–10, 1968).

  169. 169.

    Duant, J.D., ‘Preliminary thermodynamic data for the inversion curve of helium-3’, Cryogenics, Vol. 10, (December 1970), pp. 473–475.

  170. 170.

    Kraus, J., Uhlig, E. and Wiedemann, W., ‘Enthalpy-pressure (H-p) diagram of helium-3 in the range 1.0 K < T < 4.17 K and 0 < p < 6.5 atm and inversion curve for T < 4.17 K’, Cryogenics, Vol. 14, No. 1, pp. 29–35, (January 1974)

  171. 171.

    Prydz, R. and Straty, G.C., ‘PVT Measurements, virial coefficients and Joule-Thomson inversion curve for fluorine’, Journal of Research of the National Bureau of Standards-A, Physics and Chemistry, Vol. 74A, No. 6, November–December, (1970),pp. 747–760

  172. 172.

    Prydz, R., ‘The experimental PvT surface and corresponding thermodynamic properties of fluorine’, Ph.D. Dissertation, University of Colorado, Boulder, Colorado, U.S.A., (August 1970)

  173. 173.

    Hausen, von H., “Über die Temperaturanderung von Gasen bei der Entspannunng durch Drosselung und äussere Arbeitsleistun”, Zeitshr. f. Techn. Physik., Nr. 9, pp. 444–452, (1926).

  174. 174.

    Keyes, F.G., “Gas thermometer scale conventions based on an objective correlation of available data of hydrogen, helium and nitrogen”, in Temperature, Reinhold Press, New York, (1941), pp. 45–59.

  175. 175.

    Keesom, W.H., Helium, Elsevier Press, Amsterdam, 1942, (reprinted 1952).

  176. 176.

    Cook, G.A. (Editor), Argon, Helium and the Rare Gases, Volume 1, pp. 285–287, Interscience Publishers, New York, (1961).

  177. 177.

    Bender, E., “Equation of state exactly representing the phase behavior of pure substance”, Proceedings of the Fifth Symposium of the Thermophysical Properties, ASME, (1970), pp. 227–235.

  178. 178.

    Coleman, T.C. and Stewart, R.B., “Thermophysical properties of nitrogen from 70 K to 1000 K with pressures to 1000 Atm.”, Presented at the NASA-NRC 13th International Congress of Refrigeration, Washington, D.C., August 27–September 3, (1971).

  179. 179.

    Boschi-Filho, H., et al., “Second virial coefficient for real gases at high temperature”, arXiv:cond-mat/9701185v2, January 28, 1997.

  180. 180.

    Guangming Chen, et al., “Study of theoretical refrigeration temperature of regenerative cryocoolers”, Proceedings of the Sixteenth International Cryogenic Engineering Conference, (ICEC-16), Part 1, p. 407.

  181. 181.

    Hausen, von H., “Über die temperaturanderung von gasen bei der entspannunng durch drosselung und äussere arbeitsleistun”, Zeitshr. f. Techn. Physik., Nr. 8, pp. 371–377, (1926).

  182. 182.

    Duant, J.G., The Production of Low Temperatures down to Hydrogen Temperatures. Handbuch der Physik, Vol. 4, Springer-Verlag, Berlin, Germany, 1956.

  183. 183.

    Maytal, B-Z., “Open cycle Joule-Thomson cryocooling with prior sequential isentropic expansion”, Advances in Cryogenic Engineering, Vol. 53B, edited by Weisend II, J.G., et al., published by The American Institute of Physics, Melville, New York, (2008), AIP Conference Proceedings, Vol. 985, pp. 1041–1048.

  184. 184.

    Simon, F., Zt. Gesamte Kalte-Industrie, Vol. 38, p. 89, (1932).

  185. 185.

    Simon, F., Phys. Z., Vol. 43, p. 232, (1932).

  186. 186.

    Simon, F., Proceedings of the 7th International Congress of Refrigeration, Vol. 1, p. 367, (1936).

  187. 187.

    Timmerhaus, K.D. and Flynn, T.M., Cryogenic Process Engineering, The International Cryogenic Monographs Series, Plenum Press, New York, (1989), section 4.3.2.

  188. 188.

    Mandelssohn, K., The quest for absolute zero, McGraw Hill Press, New York, (1966).

  189. 189.

    Arp, V., “Forced flow, single-phase helium cooling systems”, Advances in Cryogenic Engineering, Vol. 17, Plenum Press, New York, (1972), pp. 342–351.

  190. 190.

    Liepmann, H.W. and Roshko, A., Elements of Gas Dynamics, John Wiley and Sons Press, New York, (1957).

  191. 191.

    Anderson, J.D., Modern Compressible Flow, McGraw-Hill Press, New York, (1990).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Maytal, BZ., Pfotenhauer, J.M. (2013). The Joule-Thomson Effect, Its Inversion and Other Expansions. In: Miniature Joule-Thomson Cryocooling. International Cryogenics Monograph Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8285-8_2

Download citation

Publish with us

Policies and ethics