Advertisement

Midisuperspace Models: Black Hole Collapse

  • Martin Bojowald
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 835)

Abstract

Inhomogeneous models of various kinds provide important steps toward the full theory, adding the issue of infinitely many degrees of freedom. The simplest inhomogenous model is that of spherical symmetry, which provides interesting ways to test the formalism as well as applications in the context of black holes. In the vacuum case the model has a finite number of dynamical degrees of freedom, but the infinitely many kinematical ones already allow one to test field theoretic aspects.

Keywords

Extrinsic Curvature Loop Quantum Gravity Hamiltonian Constraint Vertex Label Flux Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bojowald, M.: Class. Quantum Grav. 21, 3733 (2004). gr-qc/0407017MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    Cordero, P.: Ann. Phys. 108, 79 (1977)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Cordero, P., Teitelboim, C.: Ann. Phys. 100, 607 (1976)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol 1. Wiley, New York (1963)Google Scholar
  5. 5.
    Brodbeck, O.: Helv. Phys. Acta. 69, 321 (1996). gr-qc/9610024MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bojowald, M.: Canonical Gravity and Applications: Cosmology, Black Holes, and Quantum Gravity. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  7. 7.
    Thiemann, T., Kastrup, H.A.: Nucl. Phys. B 399, 211 (1993). gr-qc/9310012MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Kastrup, H.A., Thiemann, T.: Nucl. Phys. B 425, 665 (1994). gr-qc/9401032MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    Husain, V., Smolin, L.: Nucl. Phys. B 327, 205 (1989)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Bojowald, M., Swiderski, R.: Class. Quantum Grav. 21, 4881 (2004). gr-qc/0407018MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    Neville D.E. gr-qc/0511005Google Scholar
  12. 12.
    Neville D.E. gr-qc/0511006Google Scholar
  13. 13.
    Bojowald, M.: Class. Quantum Grav. 23, 987 (2006). gr-qc/0508118MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. 14.
    Dasgupta, A.: JCAP 0308, 004 (2003). hep-th/0305131ADSCrossRefGoogle Scholar
  15. 15.
    Dasgupta, A.: Class. Quantum Grav. 23, 635 (2006). gr-qc/0505017ADSzbMATHCrossRefGoogle Scholar
  16. 16.
    Bojowald, M., Swiderski, R.: Class. Quantum Grav. 23, 2129 (2006). gr-qc/0511108MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 17.
    Bojowald, M., Harada, T., Tibrewala, R.: Phys. Rev. D 78,064057 (2008). arXiv:0806.2593MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Vaz, C., Witten, L.: Phys. Rev. D 60, 024009 (1999). arXiv:gr-qc/9811062MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Vaz, C., Witten, L., Singh, T.P.: Phys. Rev. D 63, 104020 (2001). arXiv:gr-qc/0012053MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Barve, S., Singh, T.P., Vaz, C., Witten, L.: Nucl. Phys. B 532, 361 (1998). gr-qc/9802035ADSCrossRefGoogle Scholar
  21. 21.
    Kiefer, C., Müller-Hill, J., Singh, T.P., Vaz, C.: Phys. Rev. D 75, 124010 (2007). gr-qc/0703008MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Vaz, C., Gutti, S., Kiefer, C., Singh, T.P.: Phys. Rev. D 76, 124021 (2007). arXiv:0710.2164MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Tibrewala, R., Gutti, S., Singh, T.P., Vaz, C.: Phys. Rev. D 77, 064012 (2008). arXiv:0712.1413MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Vaz C., Tibrewala R., Singh T.P. arXiv:0805.0519Google Scholar
  25. 25.
    Brown, J.D., Kuchař, K.V.: Phys. Rev. D 51, 5600 (1995)MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Kiefer, C., Müller-Hill, J., Vaz, C.: Phys. Rev. D 73, 044025 (2006). gr-qc/0512047MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    Bojowald, M., Reyes, J.D., Tibrewala, R.: Phys. Rev. D 80, 084002 (2009). arXiv:0906.4767MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    Reyes J.D.: Spherically symmetric loop quantum gravity: connections to two-dimensional models and applications to gravitational collapse. Ph.D. thesis, The Pennsylvania State University (2009)Google Scholar
  29. 29.
    Ikeda, N., Izawa, K.I.: Prog. Theor. Phys. 90, 237 (1993). hep-th/9304012MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    Ikeda, N.: Ann. Phys. 235, 435 (1994). hep-th/9312059ADSzbMATHCrossRefGoogle Scholar
  31. 31.
    Schaller, P., Strobl, T.: Mod. Phys. Lett. A 9, 3129 (1994). hep-th/9405110MathSciNetADSzbMATHCrossRefGoogle Scholar
  32. 32.
    Grumiller, D., Kummer, W., Vassilevich, D.V.: Phys. Rept.369, 327 (2002). hep-th/0204253MathSciNetADSzbMATHCrossRefGoogle Scholar
  33. 33.
    Izawa, K.I.: Prog. Theor. Phys. 103, 225 (2000). hep-th/9910133MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    Bojowald, M., Reyes, J.D.: Class. Quantum Grav. 26, 035018 (2009). arXiv:0810.5119MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    Banerjee, K., Date, G.: Class. Quantum Grav. 25, 105014 (2008). arXiv:0712.0683MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    Bičák, J., Schmidt, B.: Phys. Rev. D 40, 1827 (1989)MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    Gowdy, R.H.: Ann. Phys. 83, 203 (1974)MathSciNetADSzbMATHCrossRefGoogle Scholar
  38. 38.
    Isenberg, J., Moncrief, V.: Ann. Phys. 199, 84 (1990)MathSciNetADSzbMATHCrossRefGoogle Scholar
  39. 39.
    Hinterleitner F., Major S.: arXiv:1006.4146Google Scholar
  40. 40.
    Banerjee, K., Date, G.: Class. Quantum Grav. 25, 145004 (2008). arXiv:0712.0687MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    Martín-Benito, M., Garay, L.J., Mena Marugán, G.A.: Phys. Rev. D 78, 083516 (2008). arXiv:0804.1098MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    Varadarajan, M.: Phys. Rev. D 64, 104003 (2001). gr-qc/0104051MathSciNetADSCrossRefGoogle Scholar
  43. 43.
    Varadarajan, M.: Phys. Rev. D 66, 024017 (2002). gr-qc/0204067MathSciNetADSCrossRefGoogle Scholar
  44. 44.
    Brizuela, D., Mena Marugán, G.A., Pawlowski, T.: Class. Quantum Grav. 27, 052001 (2010). arXiv:0902.0697ADSCrossRefGoogle Scholar
  45. 45.
    Mena Marugán, G.: Phys. Rev. D 56, 908 (1997). gr-qc/9704041MathSciNetADSCrossRefGoogle Scholar
  46. 46.
    Corichi, A., Cortez, J., Quevedo, H.: Phys. Rev. D 67, 087502 (2003)MathSciNetADSCrossRefGoogle Scholar
  47. 47.
    Cortez, J., Mena Marugan, G.A.: Phys. Rev. D 72, 064020 (2005)ADSCrossRefGoogle Scholar
  48. 48.
    Corichi, A., Cortez, J., Mena Marugan, G.A., Velhinho, J.M.: Phys. Rev. D 76, 124031 (2007). arXiv:0710.0277MathSciNetADSCrossRefGoogle Scholar
  49. 49.
    Cortez, J., Mena Marugan, G.A., Olmedo, J., Velhinho, J.M.: Phys. Rev. D 83, 025002 (2011). arXiv:1101.2397ADSCrossRefGoogle Scholar
  50. 50.
    Bojowald, M.: Phys. Rev. Lett .95, 061301 (2005). gr-qc/0506128MathSciNetADSCrossRefGoogle Scholar
  51. 51.
    Horowitz, G.T., Myers, R.C.: Gen. Rel. Grav. 27, 915 (1995). gr-qc/9503062MathSciNetADSCrossRefGoogle Scholar
  52. 52.
    Smolin L. gr-qc/9609034Google Scholar
  53. 53.
    Giesel, K., Thiemann, T.: Class. Quantum Grav. 24, 2465 (2007). gr-qc/0607099MathSciNetADSzbMATHCrossRefGoogle Scholar
  54. 54.
    Bojowald, M.: Phys. Rev. Lett. 87, 121301 (2001). gr-qc/0104072MathSciNetADSCrossRefGoogle Scholar
  55. 55.
    Bojowald, M.: Gen. Rel. Grav. 35, 1877 (2003). gr-qc/0305069MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer New York 2011

Authors and Affiliations

  1. 1.Center for Gravitational Physics and GeometryPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations