Advertisement

What Does It Mean for a Singularity to be Resolved?

  • Martin Bojowald
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 835)

Abstract

We have now seen and studied in quite some detail a general mechanism by which loop quantum cosmology can resolve singularities, based on the fundamental difference equation, and a very specific one of an effective bounce in a solvable model. In such a situation, and also in comparison with Wheeler–DeWitt quantizations, the question arises what it should mean, in general, for a singularity to be resolved. singularity

Keywords

Density Operator Volume Operator Loop Quantum Gravity Quantum Cosmology Hamiltonian Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Senovilla, J.M.M.: Phys. Rev. Lett. 64, 2219 (1990)MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    Kaminski, W., Lewandowski, J., Pawlowski, T.: Class. Quantum. Grav. 26, 035012 (2009)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Haro, J., Elizalde, E.: arXiv:0901.2861Google Scholar
  4. 4.
    Helling, R.: arXiv:0912.3011Google Scholar
  5. 5.
    Thiemann, T.: Class. Quantum. Grav. 15, 839 (1998). gr-qc/9606089Google Scholar
  6. 6.
    Thiemann, T.: Class. Quantum. Grav. 15, 1281 (1998). gr-qc/9705019Google Scholar
  7. 7.
    Rovelli, C., Smolin, L.: Nucl. Phys. B 442, 593 (1995). gr-qc/9411005. Erratum: Nucl. Phys. B 456:753Google Scholar
  8. 8.
    Ashtekar, A., Lewandowski, J.: Adv. Theor. Math. Phys. 1, 388 (1998). gr-qc/9711031Google Scholar
  9. 9.
    Bojowald, M., Mulryne, D., Nelson, W., Tavakol, R.: Phys. Rev. D 82, 124055 (2010). arXiv:1004.3979Google Scholar
  10. 10.
    Novello, M., Bergliaffa, S.E.P.: Phys. Rep. 463, 127 (2008)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Alvarenga, F.G., Fabris, J.C., Lemos, N.A., Monerat, G.A.: Gen. Rel. Grav. 34, 651 (2002). gr-qc/0106051Google Scholar
  12. 12.
    Acacio de Barros, J., Pinto-Neto, N., Sagiaro-Leal, M.A.: Phys. Lett. A 241, 229 (1998). gr-qc/9710084Google Scholar
  13. 13.
    Pinto-Neto, N.: Phys. Rev. D 79, 083514 (2009). arXiv:0904.4454Google Scholar
  14. 14.
    Belinskii, V.A., Khalatnikov, I.M., Lifschitz, E.M.: Adv. Phys. 13, 639 (1982)ADSCrossRefGoogle Scholar
  15. 15.
    Colistete, R. Jr, Fabris, J.C., Pinto-Neto, N.: Phys. Rev. D 62, 083507 (2000). gr-qc/0005013Google Scholar
  16. 16.
    Falciano, F.T., Pinto-Neto, N., Santini, E.S.: Phys. Rev. D 76, 083521 (2007). arXiv:0707.1088Google Scholar
  17. 17.
    Bojowald, M., Tavakol, R.: Phys. Rev. D 78, 023515 (2008). arXiv:0803.4484Google Scholar
  18. 18.
    Bojowald, M.: A Momentous Arrow of Time. Springer, Berlin (2011)Google Scholar
  19. 19.
    Gasperini, M., Giovannini, M.: Class. Quantum. Grav. 10, L133 (1993)ADSCrossRefGoogle Scholar
  20. 20.
    Kruczenski, M., Oxman, L.E., Zaldarriaga, M.: Class. Quantum. Grav. 11, 2317 (1994)MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Koks, D., Matacz, A., Hu, B.L.: Phys. Rev. D 55, 5917 (1997). Erratum: Koks, D., Matacz, A., Hu, B.L. (1997). Phys. Rev. D 56:5281.Google Scholar
  22. 22.
    Kim, S.P., Kim, S.W.: Phys. Rev. D 49, R1679 (1994)ADSCrossRefGoogle Scholar
  23. 23.
    Kim, S.P., Kim, S.W.: Phys. Rev. D 51, 4254 (1995)ADSCrossRefGoogle Scholar
  24. 24.
    Kim, S.P., Kim, S.W.: Nuovo. Cim. B 115, 1039 (2000)ADSGoogle Scholar
  25. 25.
    Kiefer, C., Polarski, D., Starobinsky, A.A.: Phys. Rev. D 62, 043518 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    Craig, D.A., Singh, P.: Phys. Rev. D 82, 123526 (2010). arXiv:1006.3837Google Scholar
  27. 27.
    Griffiths, R.B.: Phys. Rev. Lett. 70, 2201 (1993)MathSciNetADSzbMATHCrossRefGoogle Scholar
  28. 28.
    Omnés, R.: Rev. Mod. Phys. 64, 339 (1992)ADSCrossRefGoogle Scholar
  29. 29.
    Gell-Mann, M., Hartle, J.B.: Phys. Rev. D 47, 3345 (1993). gr-qc/9210010Google Scholar
  30. 30.
    Bojowald, M., Skirzewski, A.: Adv. Sci. Lett. 1, 92 (2008). arXiv:0808.0701Google Scholar
  31. 31.
    Vilenkin, A.: Phys. Rev. D 30, 509 (1984)MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    Hartle, J.B., Hawking, S.W.: Phys. Rev. D 28, 2960 (1983)MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    Conradi, H.D., Zeh, H.D.: Phys. Lett. A 154, 321 (1991)ADSCrossRefGoogle Scholar
  34. 34.
    del Campo, S., Vilenkin, A.: Phys. Lett. B 224, 45 (1989)MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    Hawking, S.W., Luttrell, J.C.: Phys. Lett. B 143, 83 (1984)MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    Kamenshchik, A., Kiefer, C., Sandhöfer, B.: Phys. Rev. D 76, 064032 (2007). arXiv:0705.1688Google Scholar
  37. 37.
    Bojowald, M.: Phys. Rev. Lett. 87, 121301 (2001). gr-qc/0104072Google Scholar
  38. 38.
    Bojowald, M.: Gen. Rel. Grav. 35, 1877 (2003). gr-qc/0305069Google Scholar
  39. 39.
    Amemiya, F., Koike, T.: Phys. Rev. D 80, 103507 (2009). arXiv:0910.4256Google Scholar
  40. 40.
    Bojowald, M.: Class. Quantum. Grav. 23, 987 (2006). gr-qc/0508118Google Scholar
  41. 41.
    Brunnemann, J., Thiemann, T.: Class. Quantum. Grav. 23, 1429 (2006). gr-qc/0505033Google Scholar
  42. 42.
    Giesel, K., Thiemann, T.: Class. Quantum. Grav. 23, 5667 (2006). gr-qc/0507036Google Scholar
  43. 43.
    Cailleteau, T., Cardoso, A., Vandersloot, K., Wands, D.: Phys. Rev. Lett. 101, 251302 (2008). arXiv:0808.0190Google Scholar
  44. 44.
    Mielczarek, J., Szydłowski, M.: Phys. Rev. D 77, 124008 (2008). arXiv:0801.1073Google Scholar
  45. 45.
    Ding, Y., Ma, Y., Yang, J.: Phys. Rev. Lett. 102, 051301 (2009). arXiv:0808.0990Google Scholar
  46. 46.
    Yang, J., Ding, Y., Ma, Y.: Phys. Lett. B 682, 1 (2009). arXiv:0904.4379Google Scholar
  47. 47.
    Bojowald, M., Singh, P., Skirzewski, A.: Phys. Rev. D 70, 124022 (2004). gr-qc/0408094Google Scholar

Copyright information

© Springer New York 2011

Authors and Affiliations

  1. 1.Center for Gravitational Physics and GeometryPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations