Advertisement

The Physical Manifold

  • M.D. Maia
Chapter

Abstract

The basic concept of a physical space was formulated by Kant in his Critique of Pure reason 1781, where he used the word mannigfaltigkeit to describe the set of all space and time perceptions [42]. Except for the lack of specification of a geometry and of the measurement conditions, Kant’s concept of physical space is very close to our present notion of space–time.

Keywords

Vector Bundle Tangent Space Covariant Derivative Tangent Vector Tangent Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 5.
    B. Riemann, Ueber die Hypothesen, welche der Geometrie zu Grunde liegen, pp. 272–287, Gesammelte Matematische Werke, Leipzig (1892). Tranlation by W. D. Clifford, On the hypothesis which lie at the base of geometry, Nature 8, 114–117 and 136–137 (1873).Google Scholar
  2. 31.
    L. O’Raifeartaigh, Phys. Rev. 139B, 1052 (1965).MathSciNetCrossRefGoogle Scholar
  3. 33.
    M. Flato & D. Sternheimer, Phys. Rev. Lett. 15, 934 (1965).MathSciNetADSCrossRefGoogle Scholar
  4. 42.
    Immanuel Kant, Critique of Pure Reason (first published in 1781), English translation by J. M. D. Meiklejohn (1900), Chapter 2, section 2, p. 75, Dover, New York, NY (2003).Google Scholar
  5. 43.
    Michael Spivak, A Comprehensive Introduction to Differential Geometry, Vol. 2, p. 135, Publish or Perish, Delaware (1975).Google Scholar
  6. 44.
    Leopoldo Nachbin, Topology and Order, Van Nostrand, Princeton, NJ (1965).Google Scholar
  7. 45.
    Louis Auslander & Robert E. Mackenzie, Introduction to Differentiable Manifolds, Dover, New York, NY (1963).Google Scholar
  8. 46.
    William M. Boothby, Introductions to Differentiable Manifolds and Riemannian Geometry, Academic, New York, NY (1975).Google Scholar
  9. 47.
    Noel J. Hicks, Notes on Differential Geometry, Van Nostrand, Princeton, NJ (1965).Google Scholar
  10. 48.
    L. P. Eisenhart, Riemannian Geometry, Princeton University Press, Princeton, 6th print NJ, (1966).Google Scholar
  11. 49.
    Lee Smolin, The Trouble with Physics, Penguin, London (2006).MATHGoogle Scholar
  12. 50.
    Ren Thom, Structural Stability And Morphogenesis , Westview Press, Boulder, CO (1994).Google Scholar
  13. 51.
    John A. Wheeler, Geometrodynamics, Academic, New York, NY (1962)Google Scholar
  14. 52.
    J. Ambjorn, J. Jurkiewicz, & R. Loll, Spin-06/16, ITP-UU-06/19, arXiv:hep-th/0604212v1 (2006).Google Scholar
  15. 53.
    Hermann Weyl, The Continuum (first published in 1918), Dover, New York, NY (1994).MATHGoogle Scholar
  16. 54.
    Solomon Feferman, The Significance of Hermann Weyl’s Das Kontinuum, In Proof Theory V. F. Hendricks et al. (Eds.), pp. 11–31, Kluwer/Springer, New York, NY (2000). see also http://math.stanford.edu/feferman/papers/DasKontinuum.pdf
  17. 55.
    J. Goldstein, Classical Mechanics, Addison-Wesley, New York, NY (1980).MATHGoogle Scholar
  18. 56.
    W. Elwood Byerly, An Introduction to the use of Generalized Coordinates in Mechanics and Physics (first published 1916), Dover, New York, NY (1965).Google Scholar
  19. 57.
    David Hilbert, The Foundations of Geometry, http://www.gutenberg.org/etext/17384.
  20. 58.
    Barrett, O’Neil, Elementary Differential Geometry, Academic, New York, NY (1996).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Universidade de Brasilia, Institute of PhysicsBrasilia D.F.Brazil

Personalised recommendations