Nanopores pp 227-254 | Cite as

Capture and Translocation of Nucleic Acids into Sub-5 nm Solid-State Nanopores

  • Meni Wanunu
  • Allison Squires
  • Amit Meller


Nanopores have emerged as single-molecule analytic tools for fundamental biophysical characterization of nucleic acids as well as for future genomic applications. The enormous interest in single-molecule analysis has spurred the development of many different approaches to nanopore fabrication. Of these, ultrathin solid-state membranes are the most promising substrates, combining exceptional robustness and control over pore size and shape with an inherently planar geometry that enables parallel detection with nanopore arrays. Moreover, nanopores with diameters in the range of 1–5 nm represent an important size regime for studying nucleic acids, as these pores can translocate long DNA and RNA molecules in a linear fashion, enabling readout of local nucleic acid structure with unparalleled read-length. In this review, we focus on two fundamental aspects of nucleic acid analysis using nanopores, namely the process of DNA capture and the subsequent translocation dynamics. We compile here a multi-parametric study of double-stranded DNA molecules of lengths ranging from 50 to 50,000 bp, and discuss the influence of DNA length, applied voltage, temperature, and salt buffer concentrations on the capture and translocation processes.


Solid-state nanopores Single-molecule detection DNA translocation DNA capture DNA-pore interactions Salt gradient focusing Attomole detection 



We acknowledge stimulating discussions contributing to this chapter with B. McNally, A. Singer, Y. Rabin, A. Grosberg, D. Nelson, A. Kolomeisky and W. Morrison. A.M. acknowledges support from NIH award HG-004128, and NSF award PHY-0646637.


  1. 1.
    Akeson M, Branton D, Kasianowicz JJ, Brandin E, Deamer DW (1999) Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys J 77(6):3227–3233CrossRefGoogle Scholar
  2. 2.
    Aksimentiev A, Heng ZB, Timp G, Schulten K (2004) Microscopic kinetics of DNA translocation through synthetic nanopores. Biophys J 87:2086–2097CrossRefGoogle Scholar
  3. 3.
    Bates M, Burns M, Meller A (2003) Dynamics of DNA molecules in a membrane channel probed by active control techniques. Biophys J 84(4):2366–2372CrossRefGoogle Scholar
  4. 4.
    Benner S, et al. (2007) Sequence-specific detection of individual DNA polymerase complexes in real time using a nanopore. Nat Nanotechnol 2(11):718–724CrossRefMathSciNetGoogle Scholar
  5. 5.
    Branton D, et al. (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26(10):1146–1153CrossRefGoogle Scholar
  6. 6.
    Butler TZ, Gundlach JH, Troll MA (2006) Determination of RNA orientation during translocation through a biological nanopore. Biophys J 90(1):190–199CrossRefGoogle Scholar
  7. 7.
    Chen P, et al. (2004) Probing single DNA molecule transport using fabricated nanopores. Nano Lett 4(11):2293–2298CrossRefGoogle Scholar
  8. 8.
    Chen P, Li CM (2007) Nanopore unstacking of single-stranded DNA helices. Small 3(7):1204–1208CrossRefGoogle Scholar
  9. 9.
    Clarke J, et al. (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4(4):265–270CrossRefGoogle Scholar
  10. 10.
    Coulter WH. 1953: US 2,656,508.Google Scholar
  11. 11.
    Dekker C (2007) Solid-state nanopores. Nat Nanotechnol 2(4):209–215CrossRefMathSciNetGoogle Scholar
  12. 12.
    Fologea D, Uplinger J, Thomas B, McNabb DS, Li J (2005) Slowing DNA translocation in a solid-state nanopore. Nano Lett 5:1734–1737CrossRefGoogle Scholar
  13. 13.
    Fologea D, Brandin E, Uplinger J, Branton D, Li J (2007) DNA conformation and base number simultaneously determined in a nanopore. Electrophoresis 28(18):3186–3192CrossRefGoogle Scholar
  14. 14.
    Fologea D, Ledden B, McNabb DS, Li JL (2007) Electrical characterization of protein molecules by a solid-state nanopore. App Phys Lett 91(5)Google Scholar
  15. 15.
    Healy K (2007) Nanopore-based single-molecule DNA analysis. Nanomed 2(4):459–481CrossRefGoogle Scholar
  16. 16.
    Heng ZB, et al. (2004) Sizing DNA using a nanometer-diameter pore. Biophys J 87:2905–2911CrossRefGoogle Scholar
  17. 17.
    Henrickson SE, Misakian M, Robertson B, Kasianowicz JJ (2000) Driven DNA transport into an asymmetric nanometer scale pore. Phys Rev Lett 85:3CrossRefGoogle Scholar
  18. 18.
    Hornblower B, et al. (2007) Single-molecule analysis of DNA-protein complexes using nanopores. Nat Methods 4(4):315–317Google Scholar
  19. 19.
    Iqbal SM, Akin D, Bashir R (2007) Solid-state nanopore channels with DNA selectivity. Nat Nanotechnol 2(4):243–248CrossRefGoogle Scholar
  20. 20.
    Jayawardhana D, Crank J, Zhao Q, Armstrong D, Guan X (2009) Nanopore stochastic detection of a liquid explosive component and sensitizers using boromycin and an ionic liquid supporting electrolyte. Anal Chem 81(1):460–464CrossRefGoogle Scholar
  21. 21.
    Kang X, Cheley S, Guan X, Bayley H (2006) Stochastic detection of enantiomers. J Am Chem Soc 128(33):10684–10685CrossRefGoogle Scholar
  22. 22.
    Kasianowicz JJ, Brandin E, Branton D, Deamer DW (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci USA 93(24): 13770–13773CrossRefGoogle Scholar
  23. 23.
    Kim MJ, Wanunu M, Bell DC, Meller A (2006) Rapid fabrication of uniformly sized nanopores and nanopore arrays for parallel DNA analysis. Adv Mater 18(23):3149–3153CrossRefGoogle Scholar
  24. 24.
    Kowalczyk S, Hall A, Dekker C (2010) Detection of local protein structures along DNA using solid-state nanopores. Nano Lett 10(1):324–428CrossRefGoogle Scholar
  25. 25.
    Li J, et al. (2001) Ion-beam sculpting at nanometre length scales. Nature 412(6843):166–169CrossRefGoogle Scholar
  26. 26.
    Li JL, Gershow M, Stein D, Brandin E, Golovchenko JA (2003) DNA molecules and configurations in a solid-state nanopore microscope. Nat Mater 2(9):611–615CrossRefGoogle Scholar
  27. 27.
    Long D, Viovy J-L, Ajdari A (1996) Simultaneous action of electric fields and nonelectric forces on a polyelectrolyte: motion and deformation. Phys Rev Lett 76:3858–3861CrossRefGoogle Scholar
  28. 28.
    Luan B, Aksimentiev A (2008) Electro-osmotic screening of the DNA charge in a nanopore. Phys Rev E 78(2):021912CrossRefGoogle Scholar
  29. 29.
    Lubensky DK, Nelson DR (1999) Driven polymer translocation through a narrow pore. Biophys J 77:1824–1838CrossRefGoogle Scholar
  30. 30.
    Luo K, Ala-Nissila T, Ying S-C, Bhattacharya A (2007) Influence of polymer-pore interactions on translocation. Phys Rev Lett 99(14)Google Scholar
  31. 31.
    Mathe J, Aksimentiev A, Nelson DR, Schulten K, Meller A (2005) Orientation discrimination of single-stranded DNA inside the alpha-hemolysin membrane channel. Proc Natl Acad Sci USA 102(35):12377–12382CrossRefGoogle Scholar
  32. 32.
    Mathe J, Arinstein A, Rabin Y, Meller A (2006) Equilibrium and irreversible unzipping of DNA in a nanopore. Europhys Lett 73(1):128–134CrossRefGoogle Scholar
  33. 33.
    McNally B, Wanunu M, Meller A (2008) Electro-mechanical unzipping of individual DNA molecules using synthetic sub-2 nm pores. Nano Lett 8(10):3418–3422CrossRefGoogle Scholar
  34. 34.
    Meller A, Nivon L, Brandin E, Golovchenko J, Branton D (2000) Rapid nanopore discrimination between single polynucleotide molecules. Proc Natl Acad Sci USA 97(3):1079–1084CrossRefGoogle Scholar
  35. 35.
    Meller A, Nivon L, Branton D (2001) Voltage-driven DNA translocations through a nanopore. Phys Rev Lett 86:3435–3438CrossRefGoogle Scholar
  36. 36.
    Meller A, Branton D (2002) Single molecule measurements of DNA transport through a nanopore. Electrophoresis 23(16):2583–2591CrossRefGoogle Scholar
  37. 37.
    Meller A (2003) Dynamics of polynucleotide transport through nanometre-scale pores. J Phys Condens Matter 15:R581–R607CrossRefGoogle Scholar
  38. 38.
    Nkodo AE, et al. (2001) Diffusion coefficient of DNA molecules during free solution electrophoresis. Electrophoresis 22:2424–2432Google Scholar
  39. 39.
    Olivera BM, Baine P, Davidson N (1964) Electrophoresis of the nucleic acids. Biopolymers 2:245–257CrossRefGoogle Scholar
  40. 40.
    Sauer-Budge AF, Nyamwanda JA, Lubensky DK, Branton D (2003) Unzipping kinetics of double-stranded DNA in a nanopore. Phys Rev Lett 90(23)Google Scholar
  41. 41.
    Singer A, et al. (2010) Nanopore based sequence specific detection of duplex DNA for genomic profiling. Nano Lett 10:738–742CrossRefGoogle Scholar
  42. 42.
    Soni GV, Meller A (2007) Progress toward ultrafast DNA Sequencing using solid-state nanopores. Clin Chem 53(11):1996–2001CrossRefGoogle Scholar
  43. 43.
    Soni GV, et al. (2010) Synchronous optical and electrical detection of biomolecules traversing through solid-state nanopores. Rev Sci Instrum 81(1):014301–014307CrossRefGoogle Scholar
  44. 44.
    Storm AJ, Chen JH, Ling XS, Zandbergen HW, Dekker C (2003) Fabrication of solid-state nanopores with single-nanometre precision. Nat Mat 2(8):537–540CrossRefGoogle Scholar
  45. 45.
    Storm AJ, et al. (2005) Fast DNA translocation through a solid-state nanopore. Nano Lett 5(7):1193–1197CrossRefGoogle Scholar
  46. 46.
    Vercoutere W, et al. (2001) Rapid discrimination among individual DNA hairpin molecules at single-nucleotide resolution using an ion channel. Nat Biotechnol 19(3):248–252CrossRefGoogle Scholar
  47. 47.
    Wanunu M, Meller A (2007) Chemically modified solid-state nanopores. Nano Lett 7(6):1580–1585CrossRefGoogle Scholar
  48. 48.
    Wanunu M, Meller A (2008) Single-molecule analysis of nucleic acids and DNA-protein interactions using nanopores. In: Selvin P, Ha TJ (eds) Single-Molecule Techniques: A Laboratory Manual. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New YorkGoogle Scholar
  49. 49.
    Wanunu M, Sutin J, McNally B, Chow A, Meller A (2008) DNA translocation governed by interactions with solid state nanopores. Biophys J 95(10):4716–4725CrossRefGoogle Scholar
  50. 50.
    Wanunu M, Morrison W, Rabin Y, Grosberg A, Meller A (2010) Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nat Nanotechnol 5:160–165CrossRefGoogle Scholar
  51. 51.
    Wanunu M, Sutin J, Meller A (2009) DNA profiling using solid-state nanopores: detection of DNA-binding molecules. Nano Lett 9:3498–3502CrossRefGoogle Scholar
  52. 52.
    Zhang J, Shklovskii BI (2007) Effective charge and free energy of DNA inside an ion channel. Phys Rev E 75:021906CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringBoston UniversityBostonUSA

Personalised recommendations