Theoretical and Computational Methods

Part of the Springer Theses book series (Springer Theses)


The content that appears in this chapter has been largely adapted from the following publications and manuscript in press: Zhao J, Pinchuk AO, McMahon JM, Li S, Ausman LK, Atkinson AL, Schatz GC (2008) Methods for describing the electromagnetic properties of silver and gold nanoparticles. Acc Chem Res 41:1710–1720. doi: 10.1021/ar800028jAtkinson AL, McMahon JM, Schatz GC (2009) FDTD studies of metallic nanoparticle systems. In: Self organization of molecular systems, from molecules and clusters to nanotubes and proteins. NATO science for peace and security series A: chemistry and biology. Springer, Netherlands. doi: 10.1007/978-90-481-2590-6


Computational Domain Lagrangian Density Spatial Derivative Perfectly Match Layer Numerical Dispersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    McMahon JM, Gray SK, Schatz GC (2011) Surface nanophotonics theory. In: Wiederrecht G (ed) Comprehensive nanoscience and technology. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    McMahon JM, Henry AI, Wustholz KL, Natan MJ, Freeman RG, Van Duyne RP, Schatz GC (2009) Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy. Anal Bioanal Chem 394:1825–1825CrossRefGoogle Scholar
  3. 3.
    Zhao J, Pinchuk AO, McMahon JM, Li S, Ausman LK, Atkinson AL, Schatz GC (2008) Methods for describing the electromagnetic properties of silver and gold nanoparticles. Acc Chem Res 41:1720–1720CrossRefGoogle Scholar
  4. 4.
    Atkinson AL, McMahon JM, Schatz GC (2009) FDTD studies of metallic nanoparticle systems. In: Self organization of molecular systems, from molecules and clusters to nanotubes and proteins, NATO science for peace and security series A, chemistry and biology. Springer, NetherlandsGoogle Scholar
  5. 5.
    Taflove A, Hagness S (2005) Computational electrodynamics: the finite-difference time-domain method, 3rd edn. Artech House, BostonGoogle Scholar
  6. 6.
    Jin J (2002) The finite element method in electromagnetics. Wiley, New YorkGoogle Scholar
  7. 7.
    Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 25:377–445CrossRefGoogle Scholar
  8. 8.
    Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New YorkGoogle Scholar
  9. 9.
    Peña O, Pal U (2009) Scattering of electromagnetic radiation by a multilayered sphere. Comput Phys Commun 180:2348–2354CrossRefGoogle Scholar
  10. 10.
    Yeh P (1988) Optical waves in layered media, 1st edn. Wiley, New YorkGoogle Scholar
  11. 11.
    Yee SK (1966) Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antennas Propagat 14:302–307CrossRefGoogle Scholar
  12. 12.
    Berenger JP (1994) A perfectly matched layer for the absorption of electromagnetic waves. J Comp Phys 114:185–200CrossRefGoogle Scholar
  13. 13.
    Roden JA, Gedney SD (2000) Convolutional PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media. Microw Opt Techn Let 27:334–339CrossRefGoogle Scholar
  14. 14.
    McMahon JM, Gray SK, Schatz GC (2009) A discrete action principle for electrodynamics and the construction of explicit symplectic integrators for linear, non-dispersive media. J Comp Phys 228:3421–3432CrossRefGoogle Scholar
  15. 15.
    Umashankar KR, Taflove A (1982) A novel method to analyze electromagnetic scattering of complex objects. IEEE T Electromagn Compat 24:397–405CrossRefGoogle Scholar
  16. 16.
    Mur G (1981) Absorbing boundary conditions for the finite difference approximation of the time-domain electromagnetic field equations. IEEE T Electromagn C 23:377–382CrossRefGoogle Scholar
  17. 17.
    Merewether DE, Fisher R, Smith FW (1980) On implementing a numeric Huygen’s source scheme in a finite difference program to illuminate scattering bodies. IEEE T Nucl Sci 27:1829–1833CrossRefGoogle Scholar
  18. 18.
    Kashiwa T, Fukai I (1990) A treatment by FDTD method of dispersive characteristics associated with electronic polarization. Microw Opt Techn Lett 3:203–205CrossRefGoogle Scholar
  19. 19.
    Joseph RM , Hagness SC, Taflove A (1991) Direct time integration of Maxwell’s equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses. Opt Lett 16:1412–1414CrossRefGoogle Scholar
  20. 20.
    Gray SK, Kupka T (2003) Propagation of light in metallic nanowire arrays: finite-difference time-domain studies of silver cylinders. Phys Rev B 68:045415CrossRefGoogle Scholar
  21. 21.
    McMahon JM, Wang Y, Sherry LJ, Van Duyne RP, Marks LD, Gray SK, Schatz GC (2009) Correlating the structure, optical spectra, and electrodynamics of single silver nanocubes. J Phys Chem 113:2731–2735CrossRefGoogle Scholar
  22. 22.
    Babayan Y, McMahon JM , Li S, Gray SK, Schatz GC, Odom TW (2009) Confining standing waves in optical corrals. ACS Nano 3:615–620CrossRefGoogle Scholar
  23. 23.
    Ringe E, McMahon JM, Sohn K, Cobley C, Xia Y, Huang J, Schatz GC, Marks LD, Van Duyne RP (2010) Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: a systematic single particle approach. J Phys Chem C 114:12511–12516CrossRefGoogle Scholar
  24. 24.
    McMahon JM, Henzie J, Odom TW, Schatz GC, Gray SK (2007) Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons. Opt Express 15:18119–18129CrossRefGoogle Scholar
  25. 25.
    Schatz GC, McMahon JM, Gray SK (2007) Tailoring the parameters of nanohole arrays in gold films for sensing applications. In: Mark I Stockman (ed) Plasmonics: metallic nanostructures and their optical properties V, pp 664103(1–8)Google Scholar
  26. 26.
    Gao H, McMahon JM, Lee MH, Henzie J, Gray SK, Schatz GC, Odom TW (2009) Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays. Opt. Express 17:2334–2340CrossRefGoogle Scholar
  27. 27.
    Odom TW, Gao H, McMahon JM, Henzie J, Schatz GC (2009) Plasmonic superlattices: hierarchical subwavelength hole arrays. Chem Phys Lett 483:187–192CrossRefGoogle Scholar
  28. 28.
    Stewart ME, Mack NH, Malyarchuck V, Soares JANT, Lee TW, Gray SK, Nuzzo RG, Rogers JA (2006) Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals. Proc Natl Acad Sci USA, 103:17143–17148CrossRefGoogle Scholar
  29. 29.
    Chang SH, Gray SK, Schatz GC (2005) Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films. Opt Express 13:3150–3165CrossRefGoogle Scholar
  30. 30.
    Schwartz M (1987) Principles of electrodynamics, 1st edn. Dover Publications, New YorkGoogle Scholar
  31. 31.
    Jackson JD (1998) Classical electrodynamics, 3rd edn. Wiley, New YorkGoogle Scholar
  32. 32.
    Manry CW, Broschat SL, Schneider JB (1995) Higher-order FDTD methods for large problems. J Appl Comput Electromagnet Soc 10:17–29Google Scholar
  33. 33.
    Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1988) Numerical recipes in C: the art of scientific computing, 1st edn. Cambridge University Press, CambridgeGoogle Scholar
  34. 34.
    Verlet L (1967) Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard–Jones molecules. Phys Rev 159:98–103CrossRefGoogle Scholar
  35. 35.
    Goldstein H (1980) Classical mechanics, 2nd edn. Addison-Wesley, MAGoogle Scholar
  36. 36.
    Ruth RD (1983) A canonical integration technique. IEEE Trans Nucl Sci NS-30:2669–2671Google Scholar
  37. 37.
    Yoshida H (1990) Construction of higher order symplectic integrators. 150:262–268Google Scholar
  38. 38.
    Suris YB (1990) Hamiltonian methods of Runge–Kutta type and their variational interpretation. Math Mod 2:78–87Google Scholar
  39. 39.
    Candy J, Rozmus W (1991) A symplectic integration algorithm for separable Hamiltonian functions. J Comp Phys 92:230–256CrossRefGoogle Scholar
  40. 40.
    McLachlan RI, Atela P (1992) The accuracy of symplectic integrators. Nonlinearity 5:541–562CrossRefGoogle Scholar
  41. 41.
    Okunbor DI, Skeel RD (1992) Explicit canonical methods for Hamiltonian systems. Math Comput 59:439–455CrossRefGoogle Scholar
  42. 42.
    Sanz-Serna JM (1992) The numerical integration of Hamiltonian systems. In: Cash JR, Gladwell I (eds) Computational ordinary differential equations. Clarendon Press, OxfordGoogle Scholar
  43. 43.
    Tuckerman M, Berne BJ, Martyna GJ (1992) Reversible multiple time scale molecular dynamics. J Chem Phys 97:1990–2001CrossRefGoogle Scholar
  44. 44.
    Calvo MP, Sanz-Serna JM (1993) The development of variable-step symplectic integrators with applications to the two-body problem. Siam J Sci Comput 14:936–952CrossRefGoogle Scholar
  45. 45.
    Sanz-Serna JM, Calvo MP (1993) Numerical Hamiltonian problems, 1st edn. Chapman and Hall, LondonGoogle Scholar
  46. 46.
    Gray SK, Noid DW, Sumpter BG (1994) Symplectic integrators for large scale molecular dynamics simulations: a comparison of several explicit methods. J Chem Phys 101:4062–4072CrossRefGoogle Scholar
  47. 47.
    Gray SK, Manolopoulos DE (1996) Symplectic integrators tailored to the time-dependent Schrödinger equation. J Chem Phys 104:7099–7112CrossRefGoogle Scholar
  48. 48.
    Saitoh I, Suzuki Y, Takahashi N (2001) The symplectic finite difference time domain method. IEEE T Magn 37:3251–3254CrossRefGoogle Scholar
  49. 49.
    Huang Z, Wu X (2005) Symplectic partitioned Runge–Kutta scheme for Maxwell’s equations. Int J Quant Chem 106:839–842CrossRefGoogle Scholar
  50. 50.
    Sha W, Huang Z, Wu X , Chen M (2007) Application of the symplectic finite-difference time-domain scheme to electromagnetic simulation. J Comp Phys 225:33–50CrossRefGoogle Scholar
  51. 51.
    Anderson N, Arthurs AM (1978) A variational principle for Maxwell’s equations. Int J Electron 45:333–334CrossRefGoogle Scholar
  52. 52.
    Masiello D, Deumens E, Öhrn Y (2005) Dynamics of an atomic electron and its electromagnetic field in a cavity. Phys Rev A 71:032108CrossRefGoogle Scholar
  53. 53.
    Marsden JE, West M (2001) Discrete mechanics and variational integrators. Acta Numer 10:357–514CrossRefGoogle Scholar
  54. 54.
    Qin H, Guan X (2008) Variational symplectic integrator for long-time simulations of the guiding-center motion of charged particles in general magnetic fields. Phys Rev Lett 100:035006CrossRefGoogle Scholar
  55. 55.
    McLachlan RI, Gray SK (1997) Optimal stability polynomials for splitting methods, with application to the time-dependent Schrödinger equation. Appl Numer Math 25:275–286Google Scholar
  56. 56.
    Hairer E, Lubich C, Wanner G (2002) Geometric numerical integration: structure-preserving algorithms for ordinary differential equations, 1st edn. Springer, BerlinGoogle Scholar
  57. 57.
    Liu Y (1996) Fourier analysis of numerical algorithms for the Maxwell equations. J Comp Phys 124:396–416CrossRefGoogle Scholar
  58. 58.
    Hoffman J (1992) Numerical methods for engineers and scientists, 1st edn. McGraw-Hill, New YorkGoogle Scholar
  59. 59.
    Berenger JP (1996) Perfectly matched layer for the FDTD solution of wave-structure interaction problems. IEEE Trans Antennas Propagat 51:110–117CrossRefGoogle Scholar
  60. 60.
    Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297CrossRefGoogle Scholar
  61. 61.
    Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081CrossRefGoogle Scholar
  62. 62.
    Borisov AG, Shabanov SV (2005) Lanczos pseudospectral method for initial-value problems in electrodynamics and its applications to ionic crystal gratings. J Comp Phys 209:643–664CrossRefGoogle Scholar
  63. 63.
    Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55:2471–2474CrossRefGoogle Scholar
  64. 64.
    Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52:997CrossRefGoogle Scholar
  65. 65.
    Nedelec JC (1980) Mixed finite elements in \({\mathbf{R}}^3\). Numer Meth 35:315–341CrossRefGoogle Scholar
  66. 66.
    Graglia RD, Wilton DR, Peterson AF (1997) Higher order interpolatory vector bases for computational electromagnetics. IEEE Trans Antennas Propagat AP-45:329–342CrossRefGoogle Scholar
  67. 67.
    Dunvant DA (1985) High degree efficient symmetrical Gaussian quadrature rules for the triangle. Int J Numer Meth Eng 29:1129–1148CrossRefGoogle Scholar
  68. 68.
    Keast P (1986) Moderate degree tetrahedral quadrature formulas. Comput Meth Appl Mech Eng 55:339–348CrossRefGoogle Scholar
  69. 69.
    Saxon DS (1955) Lecture on the scattering of light. UCLA Department meteorological science report 9Google Scholar
  70. 70.
    Moharam MG, Grann EB, Pommet DA, Gayrold TK (1995) Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J Opt Soc Am A 12:1068–1076CrossRefGoogle Scholar
  71. 71.
    Lalanne P, Morris GM (1996) Highly improved convergence of the coupled-wave method for TM polarization. J Opt Soc Am A 13:779–784CrossRefGoogle Scholar
  72. 72.
    Benabbas A, Halte V, Bigot JY (2005) Analytical model of the optical response of periodically structured metallic films. Opt Express 13:8730–8745CrossRefGoogle Scholar
  73. 73.
    McMahon JM, Gray SK, Schatz GC (2008) Dephasing of electromagnetic fields in scattering from an isolated slit in a gold film. In: Kawata S (ed) Plasmonics: nanoimaging, nanofabrication, and their applications IV, pp 703311/1–6Google Scholar

Copyright information

© Springer Science+Business Media, LLC  2011

Authors and Affiliations

  1. 1.Northwestern UniversityEvanstonUSA

Personalised recommendations