Skip to main content

TP63, TP73: The Guardian’s Elder Brothers

  • Chapter
p53

Part of the book series: Molecular Biology Intelligence Unit ((MBIU,volume 1))

  • 1350 Accesses

Abstract

TP73 and TP63 recently emerged as sharing overall architectural similarities with TP53. Phylogeny indicates that these three genes derive from a common ancestor, thus defining a new gene family. All three genes bind similar DNA consensus sequences in the promoters of many genes and regulate common generic aspects of growth control, survival, DNA repair or differentiation. However, their regulation patterns are distinct. While p53 is an ubiquitous, stress-response protein regulated at the post-translational level, p63 and p73 are expressed in a tissue and differentiation-specific manner and are also regulated at the transcriptional level. This regulation results in isoforms generated by alternative splicing or by the use of different promoters. They differ from each other in their C-terminus (which contains important regulatory domains) and, most strikingly, in their N-terminus. Thus, the major forms of p63 and p73 in many normal tissues are ΔN isoforms, which lack the transactivation domain, and can behave as repressors of the genes normally regulated by transactivation-competent (TA) forms of the protein. Control of the balance between levels of TA and ΔN forms of p63 and p73 is important in differentiation. Mice lacking TP63 or TP73 are not predisposed to cancer, but show developmental defects. In particular, TP63 knock-out mice have major defects in cranial and limb morphogenesis, and in the formation of squamous epithelia. These defects are partially recapitulated in human subjects with germline mutation in TP63. There is growing evidence that p63 and p73 are involved in carcinogenesis through several mechanisms. For instance, amplification of TP63 in squamous cancers results in overexpression of a ΔN protein that may counteract suppression by p63 as well as other family members. On the other hand, some mutant p53 can bind and inactivate p63 or p73, providing a mechanism for mutant p53 “gain-of-function” effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lane DP. Cancer. p53, guardian of the genome. Nature 1992; 358(6381):15–16.

    Article  PubMed  CAS  Google Scholar 

  2. Koshland Jr DE. Molecule of the year. Science 1993; 262(5142):1953.

    Article  PubMed  Google Scholar 

  3. Kaghad M, Bonnet H, Yang A et al. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers.

    Google Scholar 

  4. Osada M, Ohba M, Kawahara C et al. Cloning and functional analysis of human p51, which structurally and functionally resembles p53. Nat Med 1998; 4(7):839–843.

    Article  PubMed  CAS  Google Scholar 

  5. Schmale H, Bamberger C. A novel protein with strong homology to the tumor suppressor p53. Oncogene 1997; 15(11):1363–1367.

    Article  PubMed  CAS  Google Scholar 

  6. Trink B, Okami K, Wu L et al. A new human p53 homologue. Nat Med 1998; 4(7):747–748.

    Article  PubMed  Google Scholar 

  7. Yang A, Kaghad M, Wang Y et al. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell 1998; 2(3):305–316.

    Article  PubMed  CAS  Google Scholar 

  8. Hainaut P, Hollstein M. p53 and human cancer: The first ten thousand mutations. Adv Cancer Res 2000; 77:81–137.

    Article  PubMed  CAS  Google Scholar 

  9. Donehower LA, Harvey M, Slagle BL et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumors. Nature 1992; 356(6366):215–221.

    Article  PubMed  CAS  Google Scholar 

  10. Lavigueur A, Maltby V, Mock D et al. High incidence of lung, bone, and lymphoid tumors in transgenic mice overexpressing mutant alleles of the p53 oncogene. Mol Cell Biol 1989; 9(9):3982–3991.

    PubMed  CAS  Google Scholar 

  11. Conseiller E, Debussche L, Landais D et al. CTS1: A p53-derived chimeric tumor suppressor gene with enhanced in vitro apoptotic properties. J Clin Invest 1998; 101(1):120–127.

    Article  PubMed  CAS  Google Scholar 

  12. De Laurenzi VD, Catani MV, Terrinoni A et al. Additional complexity in p73: Induction by mitogens in lymphoid cells and identification of two new splicing variants epsilon and zeta. Cell Death Differ 1999; 6(5):389–390.

    Article  PubMed  Google Scholar 

  13. De Laurenzi V, Costanzo A, Barcaroli D et al. Two new p73 splice variants, gamma and delta, with different transcriptional activity. J Exp Med 1998; 188(9):1763–1768.

    Article  PubMed  Google Scholar 

  14. Ueda Y, Hijikata M, Takagi S et al. New p73 variants with altered C-terminal structures have varied transcriptional activities. Oncogene 1999; 18(35):4993–4998.

    Article  PubMed  CAS  Google Scholar 

  15. Thanos CD, Bowie JU. p53 Family members p63 and p73 are SAM domain-containing proteins. Protein Sci 1999; 8(8):1708–1710.

    Article  PubMed  CAS  Google Scholar 

  16. Dohn M, Zhang S, Chen X. p63alpha and DeltaNp63alpha can induce cell cycle arrest and apoptosis and differentially regulate p53 target genes. Oncogene 2001; 20(25):3193–3205.

    Article  PubMed  CAS  Google Scholar 

  17. Ghioni P, Bolognese F, Duijf PH et al. Complex transcriptional effects of p63 isoforms: Identification of novel activation and repression domains. Mol Cell Biol 2002; 22(24):8659–8668.

    Article  PubMed  CAS  Google Scholar 

  18. Melino G, de Laurenzi V, Vousden KH. p73: Friend or foe in tumorigenesis. Nat Rev Cancer 2002; 2(8):605–615.

    Article  PubMed  CAS  Google Scholar 

  19. Stiewe T, Zimmermann S, Frilling A et al. Transactivation-deficient DeltaTA-p73 acts as an oncogene. Cancer Res 2002; 62(13):3598–3602.

    PubMed  CAS  Google Scholar 

  20. Walker KK, Levine AJ. Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc Natl Acad Sci USA 1996; 93(26):15335–15340.

    Article  PubMed  CAS  Google Scholar 

  21. Ruaro EM, Collavin L, Del Sal G et al. A proline-rich motif in p53 is required for transactivation-independent growth arrest as induced by Gas1. Proc Natl Acad Sci USA 1997; 94(9):4675–4680.

    Article  PubMed  CAS  Google Scholar 

  22. Sakamuro D, Sabbatini P, White E et al. The polyproline region of p53 is required to activate apoptosis but not growth arrest. Oncogene 1997; 15(8):887–898.

    Article  PubMed  CAS  Google Scholar 

  23. Van Beneden RJ, Walker CW, Laughner ES. Characterization of gene expression of a p53 homologue in the soft-shell clam (Mya arenaria). Mol Mar Biol Biotechnol 1997; 6(2):116–122.

    PubMed  Google Scholar 

  24. Jacks T, Remington L, Williams BO et al. Tumor spectrum analysis in p53-mutant mice. Curr Biol 1994; 4(1):1–7.

    Article  PubMed  CAS  Google Scholar 

  25. Mills AA, Zheng B, Wang XJ et al. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 1999; 398(6729):708–713.

    Article  PubMed  CAS  Google Scholar 

  26. Yang A, Schweitzer R, Sun D et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 1999; 398(6729):714–718.

    Article  PubMed  CAS  Google Scholar 

  27. Yang A, Walker N, Bronson R et al. p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumors. Nature 2000; 404(6773):99–103.

    Article  PubMed  CAS  Google Scholar 

  28. Van Bokhoven H, McKeon F. Mutations in the p53 homolog p63: Allele-specific developmental syndromes in humans. Trends Mol Med 2002; 8(3):133–139.

    Article  PubMed  Google Scholar 

  29. Van Bokhoven H, Brunner HG. Splitting p63. Am J Hum Genet 2002; 71(1):1–13.

    Article  PubMed  Google Scholar 

  30. Versteeg R, Caron H, Cheng NC et al. 1p36: Every subband a suppressor? Eur J Cancer 1995; 31A(4):538–541.

    Article  PubMed  CAS  Google Scholar 

  31. Herath NI, Kew MC, Whitehall VL et al. p73 is up-regulated in a subset of hepatocellular carcinomas. Hepatology 2000; 31(3):601–605.

    Article  PubMed  CAS  Google Scholar 

  32. Ichimiya S, Nimura Y, Kageyama H et al. p73 at chromosome 1p36.3 is lost in advanced stage neuroblastoma but its mutation is infrequent. Oncogene 1999; 18(4):1061–1066.

    Article  PubMed  CAS  Google Scholar 

  33. Imyanitov EN, Birrell GW, Filippovich I et al. Frequent loss of heterozygosity at 1p36 in ovarian adenocarcinomas but the gene encoding p73 is unlikely to be the target. Oncogene 1999; 18(32):4640–4642.

    Article  PubMed  CAS  Google Scholar 

  34. Chompret A. The Li-Fraumeni syndrome. Biochimie 2002; 84(1):75–82.

    Article  PubMed  CAS  Google Scholar 

  35. Hall PA, Campbell SJ, O’neill M et al. Expression of the p53 homologue p63alpha and deltaNp63alpha in normal and neoplastic cells. Carcinogenesis 2000; 21(2):153–160.

    Article  PubMed  CAS  Google Scholar 

  36. Nylander K, Coates PJ, Hall PA. Characterization of the expression pattern of p63 alpha and delta Np63 alpha in benign and malignant oral epithelial lesions. Int J Cancer 2000; 87(3):368–372.

    Article  PubMed  CAS  Google Scholar 

  37. Nylander K, Vojtesek B, Nenutil R et al. Differential expression of p63 isoforms in normal tissues and neoplastic cells. J Pathol 2002; 198(4):417–427.

    Article  PubMed  CAS  Google Scholar 

  38. Pozniak CD, Radinovic S, Yang A et al. An anti-apoptotic role for the p53 family member, p73, during developmental neuron death. Science 2000; 289(5477):304–306.

    Article  PubMed  CAS  Google Scholar 

  39. Ratovitski EA, Patturajan M, Hibi K et al. p53 associates with and targets Delta Np63 into a protein degradation pathway. Proc Natl Acad Sci USA 2001; 98(4):1817–1822.

    Article  PubMed  CAS  Google Scholar 

  40. Fuchs SY, Adler V, Buschmann T et al. JNK targets p53 ubiquitination and degradation in nonstressed cells. Genes Dev 1998; 12(17):2658–2663.

    Article  PubMed  CAS  Google Scholar 

  41. Michael D, Oren M. The p53-Mdm2 module and the ubiquitin system. Semin Cancer Biol 2003; 13(1):49–58.

    Article  PubMed  CAS  Google Scholar 

  42. Buschmann T, Potapova O, Bar-Shira A et al. Jun NH2-terminal kinase phosphorylation of p53 on Thr-81 is important for p53 stabilization and transcriptional activities in response to stress. Mol Cell Biol 2001; 21(8):2743–2754.

    Article  PubMed  CAS  Google Scholar 

  43. Kadakia M, Slader C, Berberich SJ. Regulation of p63 function by Mdm2 and MdmX. DNA Cell Biol 2001; 20(6):321–330.

    Article  PubMed  CAS  Google Scholar 

  44. Little NA, Jochemsen AG. Hdmx and Mdm2 can repress transcription activation by p53 but not by p63. Oncogene 2001; 20(33):4576–4580.

    Article  PubMed  CAS  Google Scholar 

  45. Wang X, Arooz T, Siu WY et al. MDM2 and MDMX can interact differently with ARF and members of the p53 family. FEBS Lett 2001; 490(3):202–208.

    Article  PubMed  CAS  Google Scholar 

  46. Wang XQ, Ongkeko WM, Lau AW et al. A possible role of p73 on the modulation of p53 level through MDM2. Cancer Res 2001; 61(4):1598–1603.

    PubMed  CAS  Google Scholar 

  47. Balint E, Bates S, Vousden KH. Mdm2 binds p73 alpha without targeting degradation. Oncogene 1999; 18(27):3923–3929.

    Article  PubMed  CAS  Google Scholar 

  48. Dobbelstein M, Wienzek S, Konig C et al. Inactivation of the p53-homologue p73 by the mdm2-oncoprotein. Oncogene 1999; 18(12):2101–2106.

    Article  PubMed  CAS  Google Scholar 

  49. Ongkeko WM, Wang XQ, Siu WY et al. MDM2 and MDMX bind and stabilize the p53-related protein p73. Curr Biol 1999; 9(15):829–832.

    Article  PubMed  CAS  Google Scholar 

  50. Zeng X, Chen L, Jost CA et al. MDM2 suppresses p73 function without promoting p73 degradation. Mol Cell Biol 1999; 19(5):3257–3266.

    PubMed  CAS  Google Scholar 

  51. Alarcon-Vargas D, Fuchs SY, Deb S et al. p73 transcriptional activity increases upon cooperation between its spliced forms. Oncogene 2000; 19(6):831–835.

    Article  PubMed  CAS  Google Scholar 

  52. Lee CW, La Thangue NB. Promoter specificity and stability control of the p53-related protein p73. Oncogene 1999; 18(29):4171–4181.

    Article  PubMed  CAS  Google Scholar 

  53. Ellisen LW, Ramsayer KD, Johannessen CM et al. REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species. Mol Cell 2002; 10(5):995–1005.

    Article  PubMed  CAS  Google Scholar 

  54. De Laurenzi V, Rossi A, Terrinoni A et al. p63 and p73 transactivate differentiation gene promoters in human keratinocytes. Biochem Biophys Res Commun 2000; 273(1):342–346.

    Article  PubMed  Google Scholar 

  55. Pluquet O, Hainaut P. Genotoxic and nongenotoxic pathways of p53 induction. Cancer Lett 2001; 174(1):1–15.

    Article  PubMed  CAS  Google Scholar 

  56. Katoh I, Aisaki KI, Kurata SI et al. p51A (TAp63gamma), a p53 homolog, accumulates in response to DNA damage for cell regulation. Oncogene 2000; 19(27):3126–3130.

    Article  PubMed  CAS  Google Scholar 

  57. Liefer KM, Koster MI, Wang XJ et al. Down-regulation of p63 is required for epidermal UV-B-induced apoptosis. Cancer Res 2000; 60(15):4016–4020.

    PubMed  CAS  Google Scholar 

  58. Okada Y, Osada M, Kurata S et al. p53 gene family p51(p63)-encoded, secondary transactivator p51B(TAp63alpha) occurs without forming an immunoprecipitable complex with MDM2, but responds to genotoxic stress by accumulation. Exp Cell Res 2002; 276(2):194–200.

    Article  PubMed  CAS  Google Scholar 

  59. Agami R, Blandino G, Oren M et al. Interaction of c-Abl and p73alpha and their collaboration to induce apoptosis. Nature 1999; 399(6738):809–813.

    Article  PubMed  CAS  Google Scholar 

  60. Gong JG, Costanzo A, Yang HQ et al. The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature 1999; 399(6738):806–809.

    Article  PubMed  CAS  Google Scholar 

  61. Yuan ZM, Shioya H, Ishiko T et al. p73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage. Nature 1999; 399(6738):814–817.

    Article  PubMed  CAS  Google Scholar 

  62. Sanchez-Prieto R, Sanchez-Arevalo VJ, Servitja JM et al. Regulation of p73 by c-Abl through the p38 MAP kinase pathway. Oncogene 2002; 21(6):974–979.

    Article  PubMed  CAS  Google Scholar 

  63. Costanzo A, Merlo P, Pediconi N et al. DNA damage-dependent acetylation of p73 dictates the selective activation of apoptotic target genes. Mol Cell 2002; 9(1):175–186.

    Article  PubMed  CAS  Google Scholar 

  64. Rodriguez MS, Desterro JM, Lain S et al. SUMO-1 modification activates the transcriptional response of p53. EMBO J 1999; 18(22):6455–6461.

    Article  PubMed  CAS  Google Scholar 

  65. Minty A, Dumont X, Kaghad M et al. Covalent modification of p73alpha by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. J Biol Chem 2000; 275(46):36316–36323.

    Article  PubMed  CAS  Google Scholar 

  66. Irwin M, Marin MC, Phillips AC et al. Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature 2000; 407(6804):645–648.

    Article  PubMed  CAS  Google Scholar 

  67. Stiewe T, Putzer BM. Role of the p53-homologue p73 in E2F1-induced apoptosis. Nat Genet 2000; 26(4):464–469.

    Article  PubMed  CAS  Google Scholar 

  68. Zaika A, Irwin M, Sansome C et al. Oncogenes induce and activate endogenous p73 protein. J Biol Chem 2001; 276(14):11310–11316.

    Article  PubMed  CAS  Google Scholar 

  69. Stiewe T, Stanelle J, Theseling CC et al. Inactivation of the RB tumor suppressor gene by oncogenic isoforms of the p53 family member p73. J Biol Chem 2003.

    Google Scholar 

  70. Flores ER, Tsai KY, Crowley D et al. p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 2002; 416(6880):560–564.

    Article  PubMed  CAS  Google Scholar 

  71. Hibi K, Trink B, Patturajan M et al. AIS is an oncogene amplified in squamous cell carcinoma. Proc Natl Acad Sci USA 2000; 97(10):5462–5467.

    Article  PubMed  CAS  Google Scholar 

  72. Taniere P, Martel-Planche G, Saurin JC et al. TP53 mutations, amplification of P63 and expression of cell cycle proteins in squamous cell carcinoma of the oesophagus from a low incidence area in Western Europe. Br J Cancer 2001; 85(5):721–726.

    Article  PubMed  CAS  Google Scholar 

  73. Yamaguchi K, Wu L, Caballero OL et al. Frequent gain of the p40/p51/p63 gene locus in primary head and neck squamous cell carcinoma. Int J Cancer 2000; 86(5):684–689.

    Article  PubMed  CAS  Google Scholar 

  74. Ahomadegbe JC, Tourpin S, Kaghad M et al. Loss of heterozygosity, allele silencing and decreased expression of p73 gene in breast cancers: Prevalence of alterations in inflammatory breast cancers. Oncogene 2000; 19(47):5413–5418.

    Article  PubMed  CAS  Google Scholar 

  75. Dong S, Pang JC, Hu J et al. Transcriptional inactivation of TP73 expression in oligodendroglial tumors. Int J Cancer 2002; 98(3):370–375.

    Article  PubMed  CAS  Google Scholar 

  76. Kawano S, Miller CW, Gombart AF et al. Loss of p73 gene expression in leukemias/lymphomas due to hypermethylation. Blood 1999; 94(3):1113–1120.

    PubMed  CAS  Google Scholar 

  77. Liu M, Taketani T, Li R et al. Loss of p73 gene expression in lymphoid leukemia cell lines is associated with hypermethylation. Leuk Res 2001; 25(6):441–447.

    Article  PubMed  CAS  Google Scholar 

  78. Tokuchi Y, Hashimoto T, Kobayashi Y et al. The expression of p73 is increased in lung cancer, independent of p53 gene alteration. Br J Cancer 1999; 80(10):1623–1629.

    Article  PubMed  CAS  Google Scholar 

  79. Mai M, Qian C, Yokomizo A et al. Loss of imprinting and allele switching of p73 in renal cell carcinoma. Oncogene 1998; 17(13):1739–1741.

    Article  PubMed  CAS  Google Scholar 

  80. Kang MJ, Park BJ, Byun DS et al. Loss of imprinting and elevated expression of wild-type p73 in human gastric adenocarcinoma. Clin Cancer Res 2000; 6(5):1767–1771.

    PubMed  CAS  Google Scholar 

  81. Dominguez G, Silva J, Silva JM et al. Clinicopathological characteristics of breast carcinomas with allelic loss in the p73 region. Breast Cancer Res Treat 2000; 63(1):17–22.

    Article  PubMed  CAS  Google Scholar 

  82. Yokomizo A, Mai M, Tindall DJ et al. Overexpression of the wild-type p73 gene in human bladder cancer. Oncogene 1999; 18(8):1629–1633.

    Article  PubMed  CAS  Google Scholar 

  83. Tannapfel A, Engeland K, Weinans L et al. Expression of p73, a novel protein related to the p53 tumor suppressor p53, and apoptosis in cholangiocellular carcinoma of the liver. Br J Cancer 1999; 80(7):1069–1074.

    Article  PubMed  CAS  Google Scholar 

  84. Bensaad K, Le Bras M, Unsal K et al. Change of conformation of the DNA binding domain of p53 is the only key element for binding of and interference with p73. J Biol Chem 2003.

    Google Scholar 

  85. Gaiddon C, Lokshin M, Ahn J et al. A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol Cell Biol 2001; 21(5):1874–1887.

    Article  PubMed  CAS  Google Scholar 

  86. Strano S, Fontemaggi G, Costanzo A et al. Physical interaction with human tumor-derived p53 mutants inhibits p63 activities. J Biol Chem 2002; 277(21):18817–18826.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Courtois, S., Hainaut, P., de Caron Fromentel, C. (2010). TP63, TP73: The Guardian’s Elder Brothers. In: p53. Molecular Biology Intelligence Unit, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8231-5_3

Download citation

Publish with us

Policies and ethics