Advertisement

A Dynamic CCNBD Method for Measuring Dynamic Fracture Parameters

  • Feng Dai
  • Rong Chen
  • Kaiwen XiaEmail author
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

The cracked chevron notch Brazilian disc (CCNBD) method is widely used in characterizing static rock fracture toughness. We explore here the possibility of extending the CCNBD method to characterizing the dynamic fracture parameters of rocks. The relevant fracture parameters are the initiation fracture toughness, fracture energy, propagation toughness, and fracture velocity. The dynamic load is applied with a split Hopkinson pressure bar (SHPB) apparatus. A strain gauge is mounted on the sample surface near the notch tip to detect the fracture-induced strain release on the sample surface, and a laser gap gauge (LGG) is used to monitor the crack surface opening distance (CSOD) during the test. With dynamic force balance achieved in the tests, the stableunstable transition of the crack propagation crack is observed and the initiation fracture toughness is obtained from the peak load. The dynamic fracture initiation toughness values obtained for the chosen rock (Laurentian granite) using this method are consistent with those reported in the literature. The fracture energy, propagation toughness and the fracture velocity are deduced using an approach based on energy conservation.

Keywords

Stress Intensity Factor Dynamic Fracture Toughness Critical Crack Length Initiation Fracture Toughness Crack Chevron Notch Brazilian Disc 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ouchterlony F. "Suggested methods for determining the fracture toughness of rock", International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 25(2): 71-96 (1988).Google Scholar
  2. 2.
    Fowell R. J., Hudson J. A., Xu C. et al. "Suggested method for determining mode-I fracture toughness using cracked chevron-notched Brazilian disc (CCNBD) specimens", International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 32(1): 57-64 (1995).CrossRefGoogle Scholar
  3. 3.
    Böhme W., Kalthoff J. F. "The behavior of notched bend specimens in impact testing", International Journal of Fracture 20(4): R139-R143 (1982).CrossRefGoogle Scholar
  4. 4.
    Tang C. N., Xu X. H. "A new method for measuring dynamic fracture-toughness of rock", Engineering Fracture Mechanics 35(4-5): 783-789 (1990).CrossRefGoogle Scholar
  5. 5.
    Zhang Z. X., Kou S. Q., Yu J. et al. "Effects of loading rate on rock fracture", International Journal of Rock Mechanics and Mining Sciences 36(5): 597-611 (1999).CrossRefGoogle Scholar
  6. 6.
    Zhang Z. X., Kou S. Q., Jiang L. G. et al. "Effects of loading rate on rock fracture: fracture characteristics and energy partitioning", International Journal of Rock Mechanics and Mining Sciences 37(5): 745-762 (2000).CrossRefGoogle Scholar
  7. 7.
    Chen R., Xia K., Dai F. et al. "Determination of dynamic fracture parameters using a semi-circular bend technique in split Hopkinson pressure bar testing", Engineering Fracture Mechanics 76(9): 1268-1276 (2009).CrossRefGoogle Scholar
  8. 8.
    Jiang F. C., Vecchio K. S. "Experimental investigation of dynamic effects in a two-bar/three-point bend fracture test", Review of Scientific Instruments 78(6): 063903 (2007).CrossRefGoogle Scholar
  9. 9.
    Weerasooriya T., Moy P., Casem D. et al. "A four-point bend technique to determine dynamic fracture toughness of ceramics", Journal of the American Ceramic Society 89(3): 990-995 (2006).CrossRefGoogle Scholar
  10. 10.
    Frew D. J., Forrestal M. J., Chen W. "A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock materials", Experimental Mechanics 41(1): 40-46 (2001).CrossRefGoogle Scholar
  11. 11.
    Frew D. J., Forrestal M. J., Chen W. "Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar", Experimental Mechanics 42(1): 93-106 (2002).CrossRefGoogle Scholar
  12. 12.
    Owen D. M., Zhuang S., Rosakis A. J. et al. "Experimental determination of dynamic crack initiation and propagation fracture toughness in thin aluminum sheets", International Journal of Fracture 90(1-2): 153-174 (1998).CrossRefGoogle Scholar
  13. 13.
    Xia K., Chalivendra V. B., Rosakis A. J. "Observing ideal "self-similar" crack growth in experiments", Engineering Fracture Mechanics 73(18): 2748-2755 (2006).CrossRefGoogle Scholar
  14. 14.
    Bertram A., Kalthoff J. F.,"Crack propagation toughness of rock for the range of low to very high crack speeds", in Advances in Fracture and Damage Mechanics Key engineering materials, Trans Tech Publications, Uetikon-Zurich, Vol. 251-252, pp. 423-430, (2003).Google Scholar
  15. 15.
    Lim I. L., Johnston I. W., Choi S. K. et al. "Fracture testing of a soft rock with semicircular specimens under 3-point bending. 1. Mode-I", International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 31(3): 185-197 (1994).CrossRefGoogle Scholar
  16. 16.
    Dwivedi R. D., Soni A. K., Goel R. K. et al. "Fracture toughness of rocks under sub-zero temperature conditions", International Journal of Rock Mechanics and Mining Sciences 37(8): 1267-1275 (2000).CrossRefGoogle Scholar
  17. 17.
    Iqbal M. J., Mohanty B. "Experimental calibration of ISRM suggested fracture toughness measurement techniques in selected brittle rocks", Rock Mechanics and Rock Engineering 40(5): 453-475 (2007).CrossRefGoogle Scholar
  18. 18.
    Kolsky H. "An investigation of the mechanical properties of materials at very high rates of loading", Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences B62: 676-700 (1949).Google Scholar
  19. 19.
    Kolsky H. "Stress waves in solids", Clarendon Press, Oxford, pp. 212 (1953).Google Scholar
  20. 20.
    Xia K., Nasseri M. H. B., Mohanty B. et al. "Effects of microstructures on dynamic compression of Barre granite", International Journal of Rock Mechanics and Mining Sciences 45(6): 879-887 (2008).CrossRefGoogle Scholar
  21. 21.
    Dai F., Xia K. W., Luo S. N. "Semi-circular bend testing with split Hopkinson pressure bar for measuring dynamic tensile strength of brittle solids", Review of Scientific Instruments 79(12) (2008).Google Scholar
  22. 22.
    Nasseri M. H. B., Mohanty B. "Fracture toughness anisotropy in granitic rocks", International Journal of Rock Mechanics and Mining Sciences 45(2): 167-193 (2008).CrossRefGoogle Scholar
  23. 23.
    Iqbal N., Mohanty B. "Experimental calibration of stress intensity factors of the ISRM suggested cracked chevron-notched Brazilian disc specimen used for determination of mode-I fracture toughness", International Journal of Rock Mechanics and Mining Sciences 43(8): 1270-1276 (2006).CrossRefGoogle Scholar
  24. 24.
    Jiang F. C., Liu R. T., Zhang X. X. et al. "Evaluation of dynamic fracture toughness K-Id by Hopkinson pressure bar loaded instrumented Charpy impact test", Engineering Fracture Mechanics 71(3): 279-287 (2004).CrossRefGoogle Scholar
  25. 25.
    ANSYS Inc. Advanced Analysis Techniques Guide (1999).Google Scholar
  26. 26.
    Barsoum R. S. "Triangular quarter-point elements as elastic and perfectly-plastic crack tip elements", International Journal for Numerical Methods in Engineering 11(1): 85-98 (1977).MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Fowell R. J., Xu C. "The use of the cracked Brazilian disc geometry for rock fracture investigations", International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 31(6): 571-579 (1994).CrossRefGoogle Scholar
  28. 28.
    Song B., Chen W. "Energy for specimen deformation in a split Hopkinson pressure bar experiment", Experimental Mechanics 46(3): 407-410 (2006).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Civil Engineering and Lassonde InstituteUniversity of TorontoTorontoCanada

Personalised recommendations