On failure and dynamic performance of materials

  • N. K. BourneEmail author
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)


The performance of armour materials depends upon deformation mechanisms operating during the penetration traditional ballistics. It has recently become possible to measure strength histories in materials under shock. The data gained for the failed strength of the armour are shown to relate directly to the penetration measured. Further it has been demonstrated in 1D strain that the material can be loaded and recovered for post-mortem examination. Failure is by micro-fracture that is a function of the defects and then cracking activated by plasticity mechanisms within the grains and failure at grain boundaries in the amorphous intergranular phase. Thus it appears that the shock-induced plastic yielding of grains at the impact face that determines the later time penetration through the tile.


Shock Compression Longitudinal Stress Lateral Stress Plate Impact Armour Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. M. Gupta: Mater. Res. Soc. Symp. Proc., 1999, 538, 139-150.CrossRefGoogle Scholar
  2. 2.
    Y. M. Gupta: in 'Shock Compression of Condensed Matter - 1999', (eds. M. D. Furnish, et al.), 3-10; 2000.Google Scholar
  3. 3.
    Z. Rosenberg: in 'Shock and Impact on Structures', (eds. C. A. Brebbia, et al.), 73-105; 1994Google Scholar
  4. 4.
    Southampton, Computational Mechanics Publications.Google Scholar
  5. 5.
    N. K. Bourne, J. C. F. Millett, Z. Rosenberg, N. H. Murray: J. Mech. Phys. Solids, 1998, 46, 1887-1908.zbMATHCrossRefGoogle Scholar
  6. 6.
    N. K. Bourne, W. H. Green, and D. P. Dandekar: Proc. R. Soc. A 2006, 462(2074), 3197-3212.zbMATHCrossRefGoogle Scholar
  7. 7.
    J. Lankford: Intl. J. Applied Ceramic Technology, 2004, 1(3), 205-210.CrossRefGoogle Scholar
  8. 8.
    V. P. Alekseevskii: Fizika Goreniya Vzryra, 1966, 2, 99.Google Scholar
  9. 9.
    A. Tate: J. Mech. Phys. Solids, 1967, 15, 387-399.CrossRefGoogle Scholar
  10. 10.
    Z. Rosenberg, Y. Partom, and D. Yaziv, J. Appl. Phys., 1981, 52, 755-758.Google Scholar
  11. 11.
    Z. Rosenberg: in 'Shock Compression of Condensed Matter - 1999', (eds. M. D. Furnish, et al.), 1033-1037; 2000, Melville, New York, American Institute of Physics.Google Scholar
  12. 12.
    J. C. F. Millett, N. K. Bourne, and Z. Rosenberg, J. Phys. D: Appl. Phys., 1996, 29, 2466-2472.Google Scholar
  13. 13.
    N. K. Bourne: Int. J. Imp. Engng., 2008, 35, 674-683.CrossRefGoogle Scholar
  14. 14.
    Z. Rosenberg, S. J. Bless, and N. S. Brar, Int. J. Impact Engng, 1990, 9, 45-49.CrossRefGoogle Scholar
  15. 15.
    Z. Rosenberg and Y. Yeshurun: Int. J. Impact Engng, 1988, 7, 357-362.CrossRefGoogle Scholar
  16. 16.
    J. Reaugh, A. Holt, M. Wilkins, B. Cunningham, B. Hord, A. Kusubov, Int.J.Imp.Eng., 1999, 23, 771-782.CrossRefGoogle Scholar
  17. 17.
    Z. Rosenberg, E. Dekel, V. Hohler, A. J. Stilp, and K. Weber: in 'Shock Compression of Condensed Matter 1997', 917-920; 1998, Woodbury, New York, American Institute of Physics.Google Scholar
  18. 18.
    G. T. Gray III, N. K. Bourne, and J. C. F. Millett: J. Appl. Phys., 2003, 94, 6430-6436.CrossRefGoogle Scholar
  19. 19.
    N. K. Bourne, G. T. Gray III, and J. C. F. Millett: J. Mat. Sci., 2009, in press.Google Scholar
  20. 20.
    N. K. Bourne, J. C. F. Millett, and J. E. Field: Proc. R. Soc.,1999, 455, 1275-1282.CrossRefGoogle Scholar
  21. 21.
    N. K. Bourne and Z. Rosenberg: in 'Shock Compression of Condensed Matter 1995', (eds. S. C. Schmidt, et al.), 567-572; 1996, Woodbury, New York, American Institute of Physics.Google Scholar
  22. 22.
    N. K. Bourne, Z. Rosenberg, and J. E. Field: J. Appl. Phys., 1995, 78, 3736-3739.CrossRefGoogle Scholar
  23. 23.
    D. E. Grady: 'Shock wave compression of brittle solids', Mech. Mater., 1998, 29, 181-203.CrossRefGoogle Scholar
  24. 24.
    N. K. Bourne, J. Millett, M. Chen, D. P. Dandekar, J. W. MacCauley: J. Appl. Phys., 2007, 102, 073514.CrossRefGoogle Scholar
  25. 25.
    M. W. Chen, J. W. McCauley, D. P. Dandekar, and N. K. Bourne: Nature Materials, 2006, 5(8), 614-618.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.AWEReadingUK

Personalised recommendations