The Effect of Tungsten Additions on the Shock Response of Tantalum

  • J. C. F. MillettEmail author
  • M. Cotton
  • S. M. Stirk
  • N. K. Bourne
  • N. T. Park
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)


The behaviour of tantalum under shock loading conditions has received significant attention due to its use as a penetrator material by the military. In common with other body centred cubic materials such a tungsten and tungsten heavy alloy (WHA), it has been shown to display a significant drop in shear strength behind the shock front before release waves bring the material back to ambient conditions. Microstructural examination of recovered samples has shown that deformation is achieved largely by the motion of existing dislocations rather than dislocation generation. As dislocation motion can be considered to be a stress relief mechanism, the observed decrease in shear strength is in agreement with microstructural results. We now extend these shear strength measurements to Ta-2.5wt% W to examine the effects of simple alloying on tantalum.


Shear Strength Shock Front Shock Loading Lateral Stress Dislocation Generation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Rohatgi, K.S. Vecchio and G.T. Gray III, Acta Mater., 49, (2001), 427-438.CrossRefGoogle Scholar
  2. 2.
    A. Rohatgi, K.S. Vecchio and G.T. Gray III, Met. Mat. Trans. A., 32A, (2001), 135-145.CrossRefGoogle Scholar
  3. 3.
    A. Rohatig and K.S. Vecchio, Mater. Sc. Engng., A328, (2002), 256-266.CrossRefGoogle Scholar
  4. 4.
    J.C.F. Millett, N.K. Bourne and G.T. Gray III, Met. Mat. Trans., 39A, (2008), 322-334.CrossRefGoogle Scholar
  5. 5.
    L.E. Murr and D. Kuhlmann-Wilsdorf, Acta Metall., 26, (1978), 847-857.CrossRefGoogle Scholar
  6. 6.
    G.T. Gray III, N.K. Bourne and J.C.F. Millett, J. Appl. Phys., 94, (2003), 6430-6436.CrossRefGoogle Scholar
  7. 7.
    J.C.F. Millett, G.T. Gray III and N.K. Bourne, J. Appl. Phys., 101, (2007), 033520.CrossRefGoogle Scholar
  8. 8.
    J.C.F. Millett, N.K. Bourne, Z. Rosenberg and J.E. Field, J. Appl. Phys. 86, (1999) 6707-6709.CrossRefGoogle Scholar
  9. 9.
    G.T. Gray III and K.S. Vecchio, Met. Mat. Trans. A. 26A, (1995), 2555-2563.CrossRefGoogle Scholar
  10. 10.
    D.H. Lassila and G.T. Gray III, J. Phys. IV. 4, (1994), 349-354.Google Scholar
  11. 11.
    A. Workman, J.C.F. Millett, S.M. Stirk, N.K. Bourne, G. Whiteman and N.T. Park, in "Shock Compression of Condensed Matter - 2009", edited by M.L. Elert, W.T. Buttler, M. D. Furnish and W.G. Proud (AIP Press, Melville, NY, 2010), p. 1019-1022.Google Scholar
  12. 12.
    S.M. Stirk, J.C.F. Millett, N.K. Bourne, G. Whiteman and N.T. Park, in "Shock Compression of Condensed Matter - 2009", edited by M.L. Elert, W.T. Buttler, M. D. Furnish and W.G. Proud (AIP Press, Melville, NY, 2010), p. 1123-1126.Google Scholar
  13. 13.
    J.C. Huang and G.T. Gray III, Mater. Sci. Engng., A103, (1988), 241-255.CrossRefGoogle Scholar
  14. 14.
    S. Mahajan and A.F. Bartlett, Acta Metall., 19, (1971), 1111-1119.CrossRefGoogle Scholar
  15. 15.
    L.E. Murr, O.T. Inal and A.A. Morales, Acta Metall., 24, (1976), 261-270.CrossRefGoogle Scholar
  16. 16.
    N.K. Bourne, Meas. Sci. Technol., 14, (2003), 273-278.CrossRefGoogle Scholar
  17. 17.
    Z. Rosenberg and Y. Partom, J. Appl. Phys., 58, (1985), 3072-3076.CrossRefGoogle Scholar
  18. 18.
    J. C. F. Millett, N. K. Bourne and Z. Rosenberg, J. Phys. D. Applied Physics, 29, (1996), 2466-2472.CrossRefGoogle Scholar
  19. 19.
    Z. Rosenberg, N. K. Bourne and J. C. F. Millett, Meas. Sci. Technol., 18, (2007), 1843-1847.CrossRefGoogle Scholar
  20. 20.
    S. P. Marsh, LASL Shock Hugoniot data, University of California Press, Los Angeles, 1980.Google Scholar
  21. 21.
    N. Bourne and J. Millett, Scripta Mater., 43, (2000), 541-546.CrossRefGoogle Scholar
  22. 22.
    P.S. Follensbee and G.T. Gray III, Int. J. Plast., 7, (1991), 651-660.CrossRefGoogle Scholar
  23. 23.
    J.C.F. Millett, G. Whiteman and N.K. Bourne, J. Appl. Phys. 105, (2009), 033515.CrossRefGoogle Scholar
  24. 24.
    R.E. Smallman, “Modern Physical Metallurgy”, Butterworths, London, (1985).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • J. C. F. Millett
    • 1
    Email author
  • M. Cotton
    • 1
  • S. M. Stirk
    • 1
  • N. K. Bourne
    • 1
  • N. T. Park
    • 1
  1. 1.AWEBerkshireUK

Personalised recommendations