Advertisement

Impact Response of PC/PMMA Composites

  • C. Allan GunnarssonEmail author
  • Tusit Weerasooriya
  • Paul Moy
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

Polycarbonate (PC) and polymethyl-methacrylate (PMMA) are commonly used materials for transparent protection. For increased effectiveness against impact, PC and PMMA are typically sandwiched and bonded in multiple layers of varying thicknesses to create a composite laminate. To develop high fidelity simulation methodologies for impact behavior for this type of laminated construction, panels were fabricated with different layers of PC and PMMA, on which blunt impact experiments were conducted. A high speed digital image correlation (DIC) technique was used to obtain full-field deformation measurements including out-of-plane displacement and surface strain. The experimental results are used to evaluate constitutive models and simulation methods for these various configurations of PC/PMMA composite laminates. In this paper, experimental technique and results are presented.

Keywords

Impact Velocity Digital Image Correlation Impact Experiment Impact Response Impact Side 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

ReferenceS

  1. 1.
    Myers, F.S. and Brittain, J.O. Mechanical Relaxation in Polycarbonate-Polysulfone Blends. Journal of Applied Polymer Science, 17, pp. 2715-2724. 1973.CrossRefGoogle Scholar
  2. 2.
    Petersen, R.J., Corneliussen, R.D., and Rozelle, L.T. Polymer Reprint, 10, pp. 385. 1969.Google Scholar
  3. 3.
    The IUPAC Compendium of Chemical Terminology, 66th Ed., pg 583 (1997).Google Scholar
  4. 4.
    Lo, Y.C. and Halldin, G. W. The Effect of Strain Rate and Degree of Crystallinity on the Solid-Phase Flow Behavior of Thermoplastic. ANTEC ’84, pp. 488-491. 1984Google Scholar
  5. 5.
    Kaufman, H. S. Introduction to Polymer Science and Technology. John Wiley and Sons Press, New York. 1977.Google Scholar
  6. 6.
    Moy, P, Weerasooriya, T., Hsieh, A. and Chen, W. Strain Rate Response of a Polycarbonate Under Uniaxial Compression. Proceedings of SEM Annual Conference on Experimental Mechanics. June 2003.Google Scholar
  7. 7.
    Mulliken, A. D. and Boyce, M. C. Mechanics of rate-dependent elastic-plastic deformation of glassy polymers from low to high strain rates. Int. J. Solids Struct. 43:5, pp. 1331–1356. 2006Google Scholar
  8. 8.
    Hall, I. H. The Effect of Strain Rate on the Stress-Strain Curve of Oriented Polymers. II. The Influence of Heat Developed During Extension. Journal of Applied Polymer Science, 12, pp 739. 1968.Google Scholar
  9. 9.
    Walley, S. M., Field, J. E., Pope, P. H., and Stafford, N. A. A Study of the Rapid Deformation Behavior of a Range of Polymers. Philos. Trans. Soc. London, A, 328, pp. 783-811. 1989.Google Scholar
  10. 10.
    Arruda, E. M., Boyce, M. C., and Jayachandran, R. Effects of Strain Rate, Temperature, and Thermomechanical Coupling on the Finite Strain Deformation of Glassy Polymers. Mechanics of Materials, 19, pp. 193-212. 1995CrossRefGoogle Scholar
  11. 11.
    Boyce, M. C. Arruda, E. M., Jayachandran, R. The Large Strain Compression, Tension, and Simple Shear of Polycarbonate. Polymer Engineering and Science, Vol. 34, No. 9, pp. 716-725. 1994.Google Scholar
  12. 12.
    Boyce, M.C. and Sarva, S. S. Mechanics of Polycarbonate during High-rate Tension. Journal of Mechanics of Materials and Structures. Volume 2 Issue 10, pp. 1853-1880. December 2007.Google Scholar
  13. 13.
    Moy, P., Weerasooriya, T., Chen, W., and Hsieh, A. Dynamic Stress-Strain Response and Failure Behavior of PMMA. Proceedings of ASME International Mechanical Engineering Congress. November 2003.Google Scholar
  14. 14.
    Hsieh, A. J., DeSchepper, D., Moy, P., Dehmer, P. G., and Song, J. W. The Effects of PMMA on Ballistic Impact Performance of Hybrid Hard/Ductile All-Plastic- and Glass-Plastic-Based Composites. ARL-TR-3155. February 2004.Google Scholar
  15. 15.
    Fountzoulas, C. G., Cheeseman, B. A. Dehmer, P. G., and Sands, J. M. A Computational Study of Laminate Transparent Armor Impacted by FSP. Proceedings of the 23rd International Symposium on Ballistics, Vol. II, pp. 873–881, Tarragona, Spain,16–20 April 2007.Google Scholar
  16. 16.
    Stenzler, J. S., Impact Mechanics of PMMA/PC Multi-Laminates with Soft Polymer Interlayers. Master of Science in Mechanical Engineering Thesis. Virginia Polytechnic Institute and State University. November 2009.Google Scholar
  17. 17.
    Gunnarsson, C. A., Ziemski, B., Weerasooriya, T., and Moy, P. Deformation and Failure of Polycarbonate during Impact as a Function of Thickness. Proceedings of the 2009 International Congress and Exposition on Experimental Mechanics and Applied Mechanics. June 2009.Google Scholar
  18. 18.
    Chu, T. C., Ranson, W. F., Sutton, M. A., and Peters, W. H. Applications of Digital-Image-Correlation Techniques to Experimental Mechanics. Experimental Mechanics. September 1995.Google Scholar
  19. 19.
    Sutton, M. A., Wolters, W. J., Peters, W. H., Ranson, W. F., and McNeill, S. R. Determination of Displacements Using an Improved Digital Image Correlation Method. Computer Vision. August 1983.Google Scholar
  20. 20.
    Bruck, H. A., McNeill, S. R., Russell S. S., Sutton, M. A. Use of Digital Image Correlation for Determination of Displacements and Strains. Non-Destructive Evaluation for Aerospace Requirements. 1989.Google Scholar
  21. 21.
    Sutton, M. A., McNeill, S. R., Helm, J. D., Schreier, H. Full-Field Non-Contacting Measurement of Surface Deformation on Planar or Curved Surfaces Using Advanced Vision Systems. Proceedings of the International Conference on Advanced Technology in Experimental Mechanics. July 1999.Google Scholar
  22. 22.
    Sutton, M. A., McNeill, S. R., Helm, and Chao, Y. J. Advances in Two-Dimensional and Three-Dimensional Computer Vision. Photomechanics. Volume 77. 2000.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • C. Allan Gunnarsson
    • 1
    Email author
  • Tusit Weerasooriya
    • 1
  • Paul Moy
    • 1
  1. 1.Army Research LaboratoryAberdeenUSA

Personalised recommendations