Dynamic-tensile-extrusion response of polytetrafluoroethylene (PTFE) and polychlorotrifluoroethylene (PCTFE)

  • Carl P. Trujillo
  • Eric N. Brown
  • G. T. GrayIII
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)


Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) experiments have been utilized to probe the dynamic tensile responses of polytetrafluoroethylene (PTFE) and polychlorotrifluoroethylene (PCTFE). These fluoropolymers exhibit more irregular deformation and stochastic-based damage and failure mechanisms than the stable plastic elongation and shear instabilities observed in metals. The technique elucidates a number of tensile mechanisms that are consistent with quasi-static, SHPB, and Taylor Impact results. Similar to the observed ductile-to-brittle transition for Taylor Impact loading, PCTFE failure occurs at a peak velocity greater than for PTFE. However, for the Dyn- Ten-Ext PCTFE exhibits even greater resistance to failure due to the tensile stress-state. While PTFE generates a large number of small fragments when extruded through the die, PCTFE draws out a smaller number of larger particles that dynamically evolve during the extrusion process through a combination of local necking mechanisms and bulk relaxation. Under Dyn-Ten-Ext loading, the propensity of PTFE to fail along normal planes is observed without indication of any localization, while the PCTFE clearly forms necks during the initial extrusion process that continue to evolve.


Extrusion Process Alamos National Laboratory Rockwell Hardness Dynamic Yield Stress Bulk Relaxation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brown E.N., Rae P.J., Gray G.T. III, “The influence of temperature and strain rate on the tensile and compressive constitutive response of four fluoropolymers” J. de Physic. IV 134, 935, 2006.Google Scholar
  2. 2.
    Brown E.N. and Dattelbaum D.M., “The role of crystalline phase on fracture and microstructure evolution of polytetrafluoroethylene (PTFE)” Polymer 46, 3056, 2005.Google Scholar
  3. 3.
    Rae P.J., Brown E.N., Clements B.E., and Dattelbaum D.M., “Pressure-induced phase change in poly(tetrafluoroethylene) at modest impact velocities” J. Appl. Phys. 98, 063521, 2005.CrossRefGoogle Scholar
  4. 4.
    Bourne N.K., Brown E.N., Millett J.C.F., Gray G.T. III, “Shock, release and Taylor impact of the semicrystalline thermoplastic polytetrafluoroethylene” J. Appl. Phys. 103, 074902, 2008.CrossRefGoogle Scholar
  5. 5.
    Brown E.N., Dattelbaum D.M., Brown D.W., Rae P.J., Clausen B., “A new strain path to inducing phase transitions in semi-crystalline polymers” Polymer 48, 2531, 2007.Google Scholar
  6. 6.
    Rae P.J. and Brown E.N., “The properties of poly(tetrafluoroethylene) (PTFE) in tension” Polymer 46, 8128, 2005.Google Scholar
  7. 7.
    Rae P.J. and Dattelbaum D.M., “The properties of poly (tetrafluoroethylene) (PTFE) in compression” Polymer 45, 7615, 2004.Google Scholar
  8. 8.
    Jordan J.L., Siviour C.R., Foley J.R., Brown E.N., “Compressive properties of extruded polytetrafluoroethylene” Polymer 48, 4184, 2007.Google Scholar
  9. 9.
    Brown E.N., Rae P.J., Dattelbaum D.M., Clausen B., Brown D.W., “In-situ measurement of crystalline lattice strains in polytetrafluoroethylene” Experimental Mechanics 48, 119, 2008.Google Scholar
  10. 10.
    Brown E.N., Clausen B., Brown D.W., “In situ measurement of crystalline lattice strains in phase IV polytetrafluoroethylene” J. Neutron Res. 15, 139, 2007.CrossRefGoogle Scholar
  11. 11.
    Bourne N.K., Millett J.C.F., Brown E.N., Gray G.T. III, “Effect of halogenation on the shock properties of semicrystalline thermoplastics” J. Appl. Phys. 102, 063510, 2007.CrossRefGoogle Scholar
  12. 12.
    Brown E.N., Rae P.J., Liu C., “Mixed-mode-I/II fracture of polytetrafluoroethylene” Maters. Sci. Engng. A 468–470, 253, 2007.CrossRefGoogle Scholar
  13. 13.
    Brown E.N., Trujillo C.P., Gray G.T. III, Rae P.J., Bourne N.K., “Soft recovery of polytetrafluoroethylene shocked through the crystalline phase II-III transition” J. Appl. Phys. 101, 024916, 2007.CrossRefGoogle Scholar
  14. 14.
    Brown E.N., Rae P.J., Orler E.B. Gray G.T. III, and Dattelbaum D.M., “The effect of crystallinity on the fracture of polytetrafluoroethylene (PTFE)” Mater. Sci. Engng. C 26, 1338, 2006.CrossRefGoogle Scholar
  15. 15.
    Bourne N.K., Gray G.T. III, “Equation of state of polytetrafluoroethylene” J. Appl. Phys. 93, 8966, 2003.CrossRefGoogle Scholar
  16. 16.
    Brown E.N., Rae P.J., Orler E.B., “The influence of temperature and strain rate on the constitutive and damage responses of polychlorotrifluoroethylene (PCTFE, Kel-F 81)” Polymer 47, 7506, 2006.Google Scholar
  17. 17.
    Gray III G.T., Cerreta E., Yablinsky C.A., Addessio L.B., Henrie B.L., Sencer B.H., Burkett M., Maudlin P.J., Maloy S.A., Trujillo C.P., Lopez M.F., “Influence of Shock Prestraining and Grain Size on the Dynamic-Tensile-Extrusion Response of Copper: Experiments and Simulation” in Shock Compression of Condensed Matter, 2007 (M. Elbert, M.D. Furnish, R. Chau, N. Holmes, J. Nguyen, eds.) pp. 725-728.Google Scholar
  18. 18.
    Cao F., Cerreta E.K., Trujillo C.P., Gray G.T. III, “Dynamic tensile extrusion response of tantalum” Acta Materialia 56, 5804, 2008.Google Scholar
  19. 19.
    Taylor G.I., “The use of flat-ended projectiles for determining dynamic yield stress. 1. Theoretical considerations” Proc. Roy. Soc. London A 194, 289, 1948.Google Scholar
  20. 20.
    Brown E.N., Trujillo C.P., Gray G.T. III “Influence of necking propensity on the dynamic-tensile-extrusion response of fluoropolymers” in DYMAT 2009: 9th International Conference on the Mechanical and Physical Behaviour of Materials Under Dynamic Loading, Vol. 1, 171-177, 2009.Google Scholar
  21. 21.
    Brown E.N., Trujillo C.P., Gray G.T. III, “Dynamic-Tensile-Extrusion Response of Fluoropolymers” in Conference of the American-Physical-Society-Topical-Group on Shock Compression of Condensed Matter, Vol. 2, Pages: 1233-1236, 2009Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Carl P. Trujillo
    • 1
  • Eric N. Brown
    • 2
  • G. T. GrayIII
    • 1
  1. 1.Los Alamos National LaboratoryLos AlamosUSA
  2. 2.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations