Skip to main content

Introduction

  • Chapter
  • First Online:

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 65))

Abstract

We compare the essential physical parameters of classical and quantum plasmas. The screening properties in degenerate and nondegenerate plasmas are discussed, in terms of Thomas–Fermi and Debye lengths, respectively. The coupling parameters associated with particle correlations are considered for classical and quantum plasmas. For classical plasmas, the average kinetic energy per particle is of the order of the thermal energy, while for dense systems it is of the order of the Fermi energy. A general approach toward fluid models deduced from kinetic descriptions of charged particle systems is proposed. This chapter is finished with brief historical notes on quantum plasma physics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Asenjo, F. A., Munoz, V., Valdivia, J. A. and Mahajan, S. M.: A hydrodynamical model for relativistic spin quantum plasmas. Phys. Plasmas 18, 012107–012118 (2011)

    Article  ADS  Google Scholar 

  2. Balescu, R.: Irreversible processes in ionized gases Phys. Fluids 3, 52–63 (1960)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Belan, P. M.: Fundamentals of Plasma Physics. Cambridge, New York (2006)

    Google Scholar 

  4. Bhatnagar, P. L., Gross, E. P. and Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)

    MATH  Google Scholar 

  5. Bonitz, M., Semkat, D., Filinov, A., Golubnychyi, V., Kremp, D., Gericke, D. O., Murillo, M. S., Filinov, V., Fortov, V., Hoyer, W. and Koch, S. W.: Theory and simulation of strong correlations in quantum Coulomb systems. J. Phys. A: Math. Gen. 36, 5921–5930 (2003)

    Article  ADS  Google Scholar 

  6. Brodin, G. and Marklund, M.: Spin magnetohydrodynamics. New J. Phys. 9, 277–288 (2007)

    Google Scholar 

  7. Brodin, G. and Marklund, M.: Spin solitons in magnetized pair plasmas. Phys. Plasmas 14, 1121071–1121075 (2007)

    Article  Google Scholar 

  8. Brodin, G., Misra, A. P. and Marklund, M.: Spin contribution to the ponderomotive force in a plasma. Phys. Rev. Lett. 105, 105004–105008 (2010)

    Article  ADS  Google Scholar 

  9. Di Ventra, M.: Electrical Transport in Nanoscale Systems. Cambridge, New York (2008)

    Book  Google Scholar 

  10. Dubois, D. F.: Electron interactions I - field theory of a degenerate electron gas. Ann. Phys. 7, 174–237 (1959)

    Article  ADS  MATH  Google Scholar 

  11. Eliasson, B. and Shukla, P. K.: Numerical and theoretical study of Bernstein modes in a magnetized quantum plasma. Phys. Plasmas 15, 1021011–1021025 (2008)

    Article  Google Scholar 

  12. Fitzpatrick, R.: The Physics of Plasmas. Lulu Inc., Raleigh (2011)

    Google Scholar 

  13. Fokker, A. D.: Die mittlere energie rotierender elektrischer dipole im strahlungsfeld, Ann. Phys. 348, 810–820 (1914)

    Article  Google Scholar 

  14. Frensley, W. R.: Boundary conditions for open systems driven far from equilibrium. Rev. Mod. Phys. 62, 745–791 (1990)

    Article  ADS  Google Scholar 

  15. Gellmann, M. and Brueckner, K. A.: Correlation energy of an electron gas at high density. Phys. Rev. 106, 364–368 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  16. Haas, F., Manfredi, G., Feix, M.: Multistream model for quantum plasmas. Phys. Rev. E 62, 2763–2772 (2000)

    Article  ADS  Google Scholar 

  17. Haas, F.: A magnetohydrodynamic model for quantum plasmas. Phys. Plasmas 12, 062117–062126 (2005)

    Article  ADS  Google Scholar 

  18. Jüngel, A.: Transport Equations for Semiconductor Devices. Springer, Berlin-Heidelberg (2009)

    Book  Google Scholar 

  19. Klimontovich, Y. and Silin, V. P.: The spectra of systems of interacting particles. In: Drummond, J. E. (ed.) Plasma Physics, pp. 35–87, McGraw-Hill, New York (1961)

    Google Scholar 

  20. Lenard, A.: On Bogoliubov’s kinetic equation for a spatially homogeneous plasma. Ann. Phys. 10, 390–400 (1960)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Lindhard, J.: On the properties of a gas of charged particles. Dan. Vidensk. Selsk., Mat. Fys. Medd. 28, 1–57 (1954)

    Google Scholar 

  22. Manfredi, G.: How to model quantum plasmas. Fields Inst. Commun. 46, 263–287 (2005)

    MathSciNet  Google Scholar 

  23. Manfredi, G., Haas, F.: Self-consistent fluid model for a quantum electron gas. Phys. Rev. B 64, 075316–075323 (2001)

    Article  ADS  Google Scholar 

  24. Marklund, M. and Brodin, G.: Dynamics of spin 1 ∕ 2 quantum plasmas. Phys. Rev. Lett. 98, 025001–025005 (2007)

    Article  ADS  Google Scholar 

  25. Marklund, M. and Lundin, J.: Quantum vacuum experiments using high intensity lasers. Eur. J. Phys. D 55, 319–326 (2009)

    Article  ADS  Google Scholar 

  26. Markowich, P. A., Ringhofer, C. A., Schmeiser, C.: Semiconductor Equations. Springer, Wien (1990)

    MATH  Google Scholar 

  27. Melrose, D. B.: Quantum Plasmadynamics: Unmagnetized Plasmas, Lecture Notes in Physics Vol. 735. Springer, New York (2008)

    Google Scholar 

  28. Nicholson, D. R.: Introduction to Plasma Theory. John Wiley, New York (1983)

    Google Scholar 

  29. Pathria, R.K.: Statistical Mechanics, 2nd ed. Butterworth-Heinemann, Woburn (1996)

    MATH  Google Scholar 

  30. Pines, D. and Nozières, P. The Theory of Quantum Liquids. New York, W. A. Benjamin (1966)

    Google Scholar 

  31. Planck, M.: Über einen satz der statistischen dynamik und seine erweiterung in der quantentheorie. Sitzber. Preuss. Akad. Wiss., Phys-Math. Klasse, 324–341 (1917)

    Google Scholar 

  32. Salinas, S. R. A.: Introduction to Statistical Physics. Springer, New York (2001)

    MATH  Google Scholar 

  33. Sawada, K.: Correlation energy of an electron gas at high density. Phys. Rev. 106, 372–383 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Shukla, P. K. and Eliasson, B.: Nonlinear interactions between electromagnetic waves and electron plasma oscillations in quantum plasma. Phys. Rev. Lett. 99, 096401–096405 (2007)

    Article  ADS  Google Scholar 

  35. Shukla, P. K.: A new spin on quantum plasmas. Nature Phys. 5, 92–93 (2009)

    Article  ADS  Google Scholar 

  36. Shukla, P. K. and Eliasson, B.: Nonlinear aspects of quantum plasma physics. Phys. Uspekhi 53, 51–76 (2010)

    Article  ADS  Google Scholar 

  37. Zamanian, J. Marklund, M. and Brodin, G.: Scalar quantum kinetic theory for spin-1/2 particles: mean field theory. New J. Phys. 12, 043019–043048 (2010)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Haas .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Haas, F. (2011). Introduction. In: Quantum Plasmas. Springer Series on Atomic, Optical, and Plasma Physics, vol 65. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8201-8_1

Download citation

Publish with us

Policies and ethics