Self-Consistent Kinetics of Molecular Plasmas: The Nitrogen Case

  • Mario Capitelli
  • Roberto Celiberto
  • Gianpiero Colonna
  • Fabrizio Esposito
  • Claudine Gorse
  • Khaled Hassouni
  • Annarita Laricchiuta
  • Savino Longo
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 85)


In this Chapter we show the influence of internal states on the electron energy distribution function and that of electrons on vibrational kinetics by using a self-consistent approach. This model solves simultaneously, in a time dependent approach, the level and free electron kinetics, that exchange information at each time step. The synergy between the two systems influences both distributions, resulting in features that cannot be explained considering the uncoupled models. Nitrogen plasmas, in discharge and afterglow conditions, are discussed.


Rate Coefficient Vibrational Level Electron Energy Distribution Function Vibrational Distribution Vibrational Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adamovich IV (2014) Three-dimensional analytic probabilities of coupled vibrational-rotational-translational energy transfer for DSMC modeling of nonequilibrium flows. Phys Fluids 26(4):046102ADSCrossRefGoogle Scholar
  2. Adamovich IV, Macheret SO, Rich JW, Treanor CE (1998) Vibrational energy transfer rates using a forced harmonic oscillator model. J Thermophys Heat Transf 12(1):57–65CrossRefGoogle Scholar
  3. ALADDIN (2013) Numerical database maintained by the IAEA nuclear data section A+M data unit.
  4. Armenise I, Esposito F (2015) N2, O2, NO state-to-state vibrational kinetics in hypersonic boundary layers: the problem of rescaling rate coefficients to uniform vibrational ladders. Chem Phys 446:30–46ADSCrossRefGoogle Scholar
  5. Bazhenov VY, Ryabtsev AV, Soloshenko IA, Terent’eva AG, Khomich VA, Tsiolko VV, Shchedrin AI (2001) Investigation of the electron energy distribution function in hollow-cathode glow discharges in nitrogen and oxygen. Plasma Phys Rep 27(9):813–818ADSCrossRefGoogle Scholar
  6. Billing GD (1982) Semiclassical calculation of rate costants for energy transfer between the asymmetric stretch mode of CO2 and N2. Chem Phys Lett 89(4):337–340ADSCrossRefGoogle Scholar
  7. Billing GD (1986) VV and VT energy transfer including multiquantum transitions in atom-diatom and diatom-diatom collisions. In: Capitelli M (ed) Nonequilibrium vibrational kinetics. Springer series topics in current physics, vol 39. Springer-Verlag, Berlin Heidelberg, pp 85–111CrossRefGoogle Scholar
  8. Billing GD, Fisher ER (1979) VV and VT rate coefficients in N2 by a quantum-classical model. Chem Phys 43(3):395–401ADSCrossRefGoogle Scholar
  9. Bourdon A, Panesi M, Brandis A, Magin TE, Chaban G, Huo W, Jaffe R, Schwenke DW (2008) Simulation of flows in shock-tube facilities by means of a detailed chemical mechanism for nitrogen excitation and dissociation. In: Proceedings of the summer program, Center for Turbulence Research, StanfordGoogle Scholar
  10. Cacciatore M, Capitelli M, Gorse C (1982) Non-equilibrium dissociation and ionization of nitrogen in electrical discharges: the role of electronic collisions from vibrationally excited molecules. Chem Phys 66(1–2):141–151ADSCrossRefGoogle Scholar
  11. Cacciatore M, Kurnosov A, Napartovich A (2005) Vibrational energy transfer in N2-N2 collisions: a new semiclassical study. J Chem Phys 123(17):174315ADSCrossRefGoogle Scholar
  12. Capitelli M (ed) (1986) Nonequilibrium vibrational kinetics. Springer series topics in current physics, vol 39. Springer-Verlag, Berlin HeidelbergGoogle Scholar
  13. Capitelli M, Celiberto R (1998) Electron-molecule cross sections for plasma applications: the role of internal energy of the target. In: Becker KH (ed) Novel aspects of electron-molecule collisions. World Scientific, Singapore/River Edge, pp 283–323CrossRefGoogle Scholar
  14. Capitelli M, Dilonardo M (1977) Nonequilibrium vibrational populations of diatomic species in electrical discharges: effects on the dissociation rates. Chem Phys 24(3):417–427ADSCrossRefGoogle Scholar
  15. Capitelli M, Dilonardo M (1978) Non-equilibrium dissociation of nitrogen. Rev Phys Appl (Paris) 13(3):115–123CrossRefGoogle Scholar
  16. Capitelli M, Gorse C (1990) Non equilibrium plasma kinetics. In: Capitelli M, Bardsley J (eds) Nonequilibrium processes in partially ionized gases. NATO ASI series, vol 220. Springer, US pp 45–61Google Scholar
  17. Capitelli M, Dilonardo M, Molinari E (1977) A theoretical calculation of dissociation rates of molecular hydrogen in electrical discharges. Chem Phys 20(3):417–429ADSCrossRefGoogle Scholar
  18. Capitelli M, Gorse C, Billing G (1980) V-V pumping up in non-equilibrium nitrogen: effects on the dissociation rate. Chem Phys 52(3):299–304ADSCrossRefGoogle Scholar
  19. Capitelli M, Gorse C, Ricard A (1981) Relaxation of the vibrational distribution function in N2 time varying discharges. J Phys Lett 42(9):185–188CrossRefGoogle Scholar
  20. Capitelli M, Gorse C, Ricard A (1982) Non equilibrium dissociation and ionization of N2 in decaying plasmas. J Phys Lett 43(12):417–423CrossRefGoogle Scholar
  21. Capitelli M, Ferreira CM, Gordiets BF, Osipov AI (2000) Plasma kinetics in atmospheric gases. Springer series on atomic, optical, and plasma physics, vol 31. Springer, Berlin/HeidelbergGoogle Scholar
  22. Capitelli M, Celiberto R, Eletskii A, Laricchiuta A (2001). Electron-molecule dissociation cross sections of H2, N2 and O2 in different vibrational levels. Atomic and plasma-material interaction data for fusion, vol 9. IAEA, Vienna, p 47Google Scholar
  23. Capitelli M, Armenise I, Bisceglie E, Bruno D, Celiberto R, Colonna G, D’Ammando G, De Pascale O, Esposito F, Gorse C, Laporta V, Laricchiuta A (2012) Thermodynamics, transport and kinetics of equilibrium and non-equilibrium plasmas: a state-to-state approach. Plasma Chem Plasma Process 32(3):427–450CrossRefGoogle Scholar
  24. Capitelli M, Colonna G, D’Ammando G, Laporta V, Laricchiuta A (2013) The role of electron scattering with vibrationally excited nitrogen molecules on non-equilibrium plasma kinetics. Phys Plasmas 20(10):101609ADSCrossRefGoogle Scholar
  25. Capitelli M, Colonna G, D’Ammando G, Laporta V, Laricchiuta A (2014) Nonequilibrium dissociation mechanisms in low temperature nitrogen and carbon monoxide plasmas. Chem Phys 438:31–36ADSCrossRefGoogle Scholar
  26. Caridade PJSB, Galvão BRL, Varandas AJC (2010a) Quasiclassical trajectory study of atom-exchange and vibrational relaxation processes in collisions of atomic and molecular nitrogen. J Phys Chem A 114(19):6063–6070CrossRefGoogle Scholar
  27. Caridade PJSB, Galvão BRL, Varandas AJC (2010b) Quasiclassical trajectory study of atom-exchange and vibrational relaxation processes in collisions of atomic and molecular nitrogen. J Phys Chem A 114(19):6063–6070CrossRefGoogle Scholar
  28. Colonna G, Capitelli M (2001) The influence of atomic and molecular metastable states in high enthalpy nozzle expansion nitrogen flows. J Phys D: Appl Phys 34:1812–1818ADSCrossRefGoogle Scholar
  29. Colonna G, Pietanza LD, Capitelli M (2008) Recombination-assisted nitrogen dissociation rates under nonequilibrium conditions. J Thermophys Heat Transf 22(3):399–406CrossRefGoogle Scholar
  30. Colonna G, Laporta V, Celiberto R, Capitelli M, Tennyson J (2015) Non equilibrium vibrational and electron energy distribution functions in atmospheric nitrogen ns discharges: the role of electron-molecule vibrational excitation scaling laws. Plasma Sources Sci Technol 24:035004ADSCrossRefGoogle Scholar
  31. Cosby PC (1993) Electron-impact dissociation of nitrogen. J Chem Phys 98(12):9544–9553ADSCrossRefGoogle Scholar
  32. De Benedictis S, Dilecce G (1995) Relaxation of excited species in He/N2 pulsed RF discharges: kinetics of metastable species. Plasma Sources Sci Technol 4(2):212ADSCrossRefGoogle Scholar
  33. Dilecce G, Ambrico PF, De Benedictis S (2007a) N\(_{2}(A^{3}\varSigma _{u}^{+})\) density measurement in a dielectric barrier discharge in N2 and N2 with small O2 admixtures. Plasma Sources Sci Technol 16(3):511ADSCrossRefGoogle Scholar
  34. Dilecce G, Ambrico PF, De Benedictis S (2007b) New N2(C 3 Π u, v) collision quenching and vibrational relaxation rate constants: 2. PG emission diagnostics of high-pressure discharges. Plasma Sources Sci Technol 16(1):S45Google Scholar
  35. Dyatko N, Napartovich A (2010) Ionization mechanisms in Ar: N2 glow discharge at elevated pressures. AIAA paper 2010–4884Google Scholar
  36. Dyatko NA, Kochetov IV, Napartovich AP (1993) Electron energy distribution function in decaying nitrogen plasmas. J Phys D: Appl Phys 26(3):418ADSCrossRefGoogle Scholar
  37. Dyatko N, Kochetov I, Napartovich A (2002) Electron temperature in nitrogen afterglow: dependence of theoretical results on the adopted set of cross sections and on the type of molecular distribution over vibrational levels. Plasma Phys Rep 28(11):965–971ADSCrossRefGoogle Scholar
  38. Dyatko NA, Ionikh YZ, Kolokolov NB, Meshchanov AV, Napartovich AP (2003) Experimental and theoretical studies of the electron temperature in nitrogen afterglow. IEEE Trans Plasma Sci 31(4):553–563ADSCrossRefGoogle Scholar
  39. Dyatko N, Ionikh Y, Meshchanov A, Napartovich A, Barzilovich K (2010) Specific features of the current-voltage characteristics of diffuse glow discharges in Ar:N2 mixtures. Plasma Phys Rep 36(12):1040–1064ADSCrossRefGoogle Scholar
  40. Eslami E, Foissac C, Campargue A, Supiot P, Sadeghi N (2002) Vibrational and rotational distributions in N\(_{2}(A^{3}\varSigma _{u}^{+}\)) metastable state in the short-lived afterglow of a flowing nitrogen microwave plasma. In: Proceedings of the XVIth Europhysics conference on atomic and molecular physics of ionized gases (ESCAMPIG)-5th international conference on reactive plasmas (ICRP) joint meeting, Grenoble, pp 57–58Google Scholar
  41. Eslami E, Foissac C, Supiot P, Sadeghi N (2004) Determination of the absolute density of N(2 P) metastable atoms and N2(a 1 Π g) molecules in a flowing nitrogen microwave discharge. In: Proceedings of the XVIIth Europhysics conference on atomic and molecular physics of ionized gases (ESCAMPIG) Constanta, p 197Google Scholar
  42. Esposito F, Capitelli M (1999) Quasiclassical molecular dynamic calculations of vibrationally and rotationally state selected dissociation cross-sections: N+ N2(\(\upsilon\),j) → 3N. Chem Phys Lett 302(1):49–54Google Scholar
  43. Esposito F, Capitelli M (2006) QCT calculations for the process N2(\(\upsilon\))+N → N2(\(\upsilon ^{{\prime}}\))+N in the whole vibrational range. Chem Phys Lett 418(4):581–585Google Scholar
  44. Esposito F, Armenise I, Capitelli M (2006a) N-N2 state to state vibrational-relaxation and dissociation rates based on quasiclassical calculations. Chem Phys 331(1):1–8ADSCrossRefGoogle Scholar
  45. Esposito F, Armenise I, Capitelli M (2006b) N-N2 state to state vibrational-relaxation and dissociation rates based on quasiclassical calculations. Chem Phys 331(1):1–8ADSCrossRefGoogle Scholar
  46. Galvão BRL, Varandas AJC (2011) Ab initio based double-sheeted DMBE potential energy surface for N3(\(^{2}A^{{\prime\prime}}\)) and exploratory dynamics calculations. J Phys Chem A 115(44):12390–12398CrossRefGoogle Scholar
  47. Galvão B, Varandas A, Braga J, Belchior J (2013) Vibrational energy transfer in collisions: a quasiclassical trajectory study. Chem Phys Lett 577:27–31ADSCrossRefGoogle Scholar
  48. Galvão B, Braga J, Belchior J, Varandas A (2014) Electronic quenching in N(2D)+N2 collisions: a state-specific analysis via surface hopping dynamics. J Chem Theory Comput 10(5):1872–1877CrossRefGoogle Scholar
  49. Garcia E, Laganà A (1997) Effect of varying the transition state geometry on N+N2 vibrational deexcitation rate coefficients. J Phys Chem A 101(26):4734–4740CrossRefGoogle Scholar
  50. GASPAR (2013) GAS and PlasmA radiation database.
  51. Gordiets B, Osipov A, Shelepin L (1988) Kinetic processes in gases and molecular lasers. Gordon and Breach Science Publishers, USGoogle Scholar
  52. Gorse C, Capitelli M (1987) Coupled electron and excited-state kinetics in a nitrogen afterglow. J Appl Phys 62(10):4072–4076ADSCrossRefGoogle Scholar
  53. Gorse C, Cacciatore M, Capitelli M, De Benedictis S, Dilecce G (1988) Electron energy distribution functions under N2 discharge and post-discharge conditions: a self-consistent approach. Chem Phys 119(1):63–70ADSCrossRefGoogle Scholar
  54. Guerra V, Galiaskarov E, Loureiro J (2003) Dissociation mechanisms in nitrogen discharges. Chem Phys Lett 371:576–581ADSCrossRefGoogle Scholar
  55. Guerra V, Sá PA, Loureiro J (2004) Kinetic modeling of low-pressure nitrogen discharges and post-discharges. Eur Phys J Appl Phys 28:125–152ADSCrossRefGoogle Scholar
  56. Guerra V, Sá PA, Loureiro J (2007) Nitrogen pink afterglow: the mystery continues. J Phys: Conf Ser 63:012007ADSGoogle Scholar
  57. Kossyi IA, Kostinsky AY, Matveyev AA, Silakov VP (1992) Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures. Plasma Sources Sci Technol 1(3):207ADSCrossRefGoogle Scholar
  58. Laganà A, Garcia E, Ciccarelli L (1987) Deactivation of vibrationally excited nitrogen molecules by collision with nitrogen atoms. J Phys Chem 91(2):312–314CrossRefGoogle Scholar
  59. Laganà A, Ochoa De Aspuru G, Garcia E (1996) Temperature dependence of quasiclassical and quantum rate coefficients for N + N2. Dipartimento di Chimica, Università di Perugia Perugia, ItalyGoogle Scholar
  60. Laporta V, Celiberto R, Wadehra JM (2012) Theoretical vibrational-excitation cross sections and rate coefficients for electron-impact resonant collisions involving rovibrationally excited N2 and NO molecules. Plasma Sources Sci Technol 21(5):055018Google Scholar
  61. Laporta V, Little DA, Celiberto R, Tennyson J (2014) Electron-impact resonant vibrational excitation and dissociation processes involving vibrationally excited N2 molecules. Plasma Sources Sci Technol 23(6):065002ADSCrossRefGoogle Scholar
  62. Lempert WR, Adamovich IV (2014) Coherent anti-Stokes Raman scattering and spontaneous Raman scattering diagnostics of nonequilibrium plasmas and flows. (Topical Review) J Phys D: Appl Phys 47(43):433001Google Scholar
  63. Lino da Silva M, Guerra V, Loureiro J (2009) A review of non-equilibrium dissociation rates and models for atmospheric entry studies. Plasma Sources Sci Technol 18(3):034023ADSCrossRefGoogle Scholar
  64. Loureiro J (1991) Dissociation rate and N(4 S) atom concentrations in a N2 glow-discharge. Chem Phys 157(1–2):157–168ADSCrossRefGoogle Scholar
  65. Loureiro J, Ferreira CM (1986) Coupled electron energy and vibrational distribution functions in stationary N2 discharges. J Phys D: Appl Phys 19(1):17ADSCrossRefGoogle Scholar
  66. Loureiro J, Ferreira CM, Capitelli M, Gorse C, Cacciatore M (1990) Non-equilibrium kinetics in nitrogen discharges: a comparative analysis of two theoretical approaches. J Phys D: Appl Phys 23(11):1371ADSCrossRefGoogle Scholar
  67. Loureiro J, Guerra V, Sá PA, Pintassilgo CD, Lino da Silva M (2011) Non-equilibrium kinetics in N2 discharges and post-discharges: a full picture by modelling and impact on the applications. Plasma Sources Sci Technol 20(2):024007ADSCrossRefGoogle Scholar
  68. LXcat (2015) Plasma data exchange project Database.
  69. Macheret SO, Adamovich IV (2000) Semiclassical modeling of state-specific dissociation rates in diatomic gases. J Chem Phys 113(17):7351ADSCrossRefGoogle Scholar
  70. Macko P, Cunge G, Sadeghi N (2001) Density of N\(_{2}(X^{1}\varSigma _{g}^{+},\upsilon\)=18) molecules in a DC glow discharge measured by cavity ringdown spectroscopy at 227 nm; validity domain of the technique. J Phys D: Appl Phys 34(12):1807ADSCrossRefGoogle Scholar
  71. Massabieaux B, Gousset G, Lefebvre M, Pealat M (1987) Determination of N2(X) vibrational level populations and rotational temperatures using CARS in a D.C. low pressure discharge. J Phys Fr 48(11):1939–1949CrossRefGoogle Scholar
  72. Nagpal R, Ghosh PK (1990) Electron energy distribution functions and vibrational population densities of excited electronic states in DC discharges through nitrogen. J Phys D: Appl Phys 23(12):1663ADSCrossRefGoogle Scholar
  73. Nagpal R, Ghosh PK (1991) Role of excited electronic states in the kinetics of electrons in nitrogen post-discharges. J Phys B: At Mol Opt Phys 24(14):3295ADSCrossRefGoogle Scholar
  74. NIFS (2013) National Institute for fusion science database.
  75. Nighan WL (1970) Electron energy distributions and collision rates in electrically excited N2, CO, and CO2. Phys Rev A 2(5):1989ADSCrossRefGoogle Scholar
  76. Panesi M, Jaffe RL, Schwenke DW, Magin TE (2013) Rovibrational internal energy transfer and dissociation of N2(\(^{1}\varSigma _{g}^{+}\))-N(4 S u) system in hypersonic flows. J Chem Phys 138(4):044312ADSCrossRefGoogle Scholar
  77. Polak LS, Sergeev PA, Slovetskii DI, Todesaite RD (1975) Proceedings 12th international conference on phenomena in ionized gases, Part 1, Eindhoven (1975)Google Scholar
  78. Simek M, Babický V, Clupek M, DeBenedictis S, Dilecce G, Sunka P (1998) Excitation of N2(C 3 Π u) and NO \((A^{2}\varSigma ^{+})\) states in a pulsed positive corona discharge in N2, N2-O2 and N2-NO mixtures. J Phys D: Appl Phys 31(19):2591ADSCrossRefGoogle Scholar
  79. Son E (1990) Electrons in low-temperature plasmas. All-Union Correspondence Polytechnic Institute, Moscow (in Russian)Google Scholar
  80. Supiot P, Blois D, De Benedictis S, Dilecce G, Barj M, Chapput A, Dessaux O, Goudmand P (1999) Excitation of N2(B 3 Π g) in the nitrogen short-lived afterglow. J Phys D: Appl Phys 32(15):1887ADSCrossRefGoogle Scholar
  81. Wang D, Huo WM, Dateo CE, Schwenke DW, Stallcop JR (2003a) Reactive resonances in the N-N2 exchange reaction. Chem Phys Lett 379(1–2):132–138ADSCrossRefGoogle Scholar
  82. Wang D, Stallcop JR, Huo WM, Dateo CE, Schwenke DW, Partridge H (2003b) Quantal study of the exchange reaction for N+N2 using an ab initio potential energy surface. J Chem Phys 118(5):2186ADSCrossRefGoogle Scholar
  83. Wang D, Huo WM, Dateo CE, Schwenke DW, Stallcop JR (2004) Quantum study of the N+N2 exchange reaction: state-to-state reaction probabilities, initial state selected probabilities, Feshbach resonances, and product distributions. J Chem Phys 120(13):6041–6050ADSCrossRefGoogle Scholar

Copyright information

© Springer New York 2016

Authors and Affiliations

  • Mario Capitelli
    • 1
  • Roberto Celiberto
    • 2
  • Gianpiero Colonna
    • 3
  • Fabrizio Esposito
    • 3
  • Claudine Gorse
    • 1
  • Khaled Hassouni
    • 4
  • Annarita Laricchiuta
    • 3
  • Savino Longo
    • 1
  1. 1.University of Bari and CNRBariItaly
  2. 2.Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh)Polytechnic of BariBariItaly
  3. 3.CNRBariItaly
  4. 4.Laboratoire des Sciences des Procédés et des Matériaux, CNRS-INSISParisFrance

Personalised recommendations