Skip to main content

Abstract

In this chapter we want to describe the vibrational kinetics of anharmonic diatomic molecule submitted to the action of different elementary processes including electron, molecule and heavy-particle collisions. A rich literature does exist on the subject including previous books written by different authors (Capitelli and Molinari 1980; Capitelli 1986; Gordiets et al. 1988; Capitelli et al. 2000; Fridman and Kennedy 2004; Fridman 2012). The chapter contains different experimental and theoretical examples which clarify the numerous applications of the vibrational kinetics under non equilibrium conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The resonant vibrational excitation processes, known as eV processes in the plasma modeling community, correspond to RVE discussed in Chap. 1

  2. 2.

    This assumption is commonly considered, even if it is valid only at low temperature.

  3. 3.

    VV rates are represented by four indexes, representing initial and final state of the two molecules. By convention here we will write as superscript the indexes of the molecule increasing its energy, and as subscript the indexes of the molecules loosing the vibrational quanta.

  4. 4.

    The case with v > i is obtained from this case by considering the reverse process and changing i with v.

  5. 5.

    It would be interesting to compare this results with the electron-electron collisions in the free electron kinetics ; even if both processes introduces non-linear terms and must fulfill a conservation principle (one for the quanta, one for the energy), e-e collisions bring the distribution towards equilibrium, while VV processes causes non-equilibrium.

References

  • Akishev YS, Dem’yanov AV, Kochetov IV, Napartovich AP, Pashkin SV, Ponomarenko VV, Pevgov VG, Podobedov VB (1982) High Temp 20:658

    Google Scholar 

  • Armenise I, Capitelli M (2005) State to state vibrational kinetics in the boundary layer of an entering body in Earth atmosphere: particle distributions and chemical kinetics. Plasma Sources Sci Technol 14(2):S9–S17

    Article  ADS  Google Scholar 

  • Armenise I, Capitelli M, Celiberto R, Colonna G, Gorse C, Laganà A (1994) The effect of N+N2 collisions on the non-equilibrium vibrational distributions of nitrogen under reentry conditions. Chem Phys Lett 227(1):157–163

    Article  ADS  Google Scholar 

  • Armenise I, Capitelli M, Gorse C (1998) Nitrogen nonequilibrium vibrational distributions and non-Arrhenius dissociation constants in hypersonic boundary layers. J Thermophys Heat Transf 12(1):45–51

    Article  Google Scholar 

  • Armenise I, Esposito F, Capitelli M (2007) Dissociation–recombination models in hypersonic boundary layer flows. Chem Phys 336(1):83–90

    Article  ADS  Google Scholar 

  • Armenise I, Rutigliano M, Cacciatore M, Capitelli M (2011) Hypersonic boundary layers: oxygen recombination on SiO2 starting from ab initio coefficients. J Thermophys Heat Transf 25(4):627–632

    Article  Google Scholar 

  • Bruno D, Capitelli M, Longo S (1998) DSMC modelling of vibrational and chemical kinetics for a reacting gas mixture. Chem Phys Lett 289(1–2):141–149

    Article  ADS  Google Scholar 

  • Bruno D, Capitelli M, Esposito F, Longo S, Minelli P (2002) Direct simulation of non-equilibrium kinetics under shock conditions in nitrogen. Chem Phys Lett 360(1–2):31–37

    Article  ADS  Google Scholar 

  • Caledonia GE, Center RE (1971) Vibrational distribution functions in anharmonic oscillators. J Chem Phys 55(2):552–561

    Article  ADS  Google Scholar 

  • Candler GV, Olejniczak J, Harrold B (1997) Detailed simulation of nitrogen dissociation in stagnation regions. Phys Fluids (1994-present) 9(7):2108–2117

    Article  ADS  Google Scholar 

  • Capitelli M (ed) (1986) Nonequilibrium vibrational kinetics. Springer series on Topics in current physics, vol 39. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  • Capitelli M, Molinari E (1980) Kinetics of dissociation processes in plasmas in the low and intermediate pressure range in Plasma Chemistry II, Springer Series Topics in Current Chemistry, vol.90, pp. 59–109. Springer, Berlin Heidelberg

    Google Scholar 

  • Capitelli M, Gorse C, Ricard A (1981) Influence of superelastic vibrational collisions on the relaxation of the electron energy distribution function in N2 post discharge regimes. J Phys Lett 42(22):469–472

    Article  Google Scholar 

  • Capitelli M, Colonna G, Gorse C, Esposito F (1999) State to state non-equilibrium vibrational kinetics: phenomenological and molecular dynamics aspects. AIAA paper 99–3568, AIAA

    Google Scholar 

  • Capitelli M, Ferreira CM, Gordiets BF, Osipov AI (2000) Plasma kinetics in atmospheric gases. Springer series on Atomic, optical, and plasma physics, vol 31. Springer, Berlin/Heidelberg

    Google Scholar 

  • Capitelli M, Colonna G, Esposito F (2004) On the coupling of vibrational relaxation with the dissociation-recombination kinetics: from dynamics to aerospace applications. J Phys Chem A 108(41):8930–8934

    Article  Google Scholar 

  • Capitelli M, Armenise I, Bisceglie E, Bruno D, Celiberto R, Colonna G, D’Ammando G, De Pascale O, Esposito F, Gorse C, Laporta V, Laricchiuta A (2012) Thermodynamics, transport and kinetics of equilibrium and non-equilibrium plasmas: a state-to-state approach. Plasma Chem Plasma Process 32:427–450

    Article  Google Scholar 

  • Colonna G, Armenise I, Bruno D, Capitelli M (2006) Reduction of state-to-state kinetics to macroscopic models in hypersonic flows. J Thermophys Heat Transf 20(3):477–486

    Article  Google Scholar 

  • Colonna G, Pietanza LD, Capitelli M (2008) Recombination assisted nitrogen dissociation rates under nonequilibrium conditions. J Thermophys Heat Transf 22(3):399–406

    Article  Google Scholar 

  • De Benedictis S, Capitelli M, Cramarossa F, Gorse C (1987) Non-equilibrium vibrational kinetics of CO pumped by vibrationally excited nitrogen molecules: a comparison between theory and experiment. Chem Phys 111(3):389–400

    Article  ADS  Google Scholar 

  • Esposito F, Armenise I, Capitelli M (2006) N-N2 state to state vibrational-relaxation and dissociation rates based on quasiclassical calculation. Chem Phys 331(1):1–8

    Article  ADS  Google Scholar 

  • Essenhigh KA, Utkin YG, Bernard C, Adamovich IV, Rich JW (2006) Gas-phase Boudouard disproportionation reaction between highly vibrationally excited CO molecules. Chem Phys 330(3):506–514

    Article  ADS  Google Scholar 

  • Farrenq R, Rossetti C (1985) Vibrational distribution functions in a mixture of excited isotopic CO molecules. Chem Phys 92(2–3):401–416

    Article  ADS  Google Scholar 

  • Flament C, George T, Meister K, Tufts J, Rich J, Subramaniam V, Martin JP, Piar B, Perrin MY (1992) Nonequilibrium vibrational kinetics of carbon monoxide at high translational mode temperatures. Chem Phys 163(2):241–262

    Article  ADS  Google Scholar 

  • Fridman A (2012) Plasma chemistry. Cambridge University Press, Cambridge

    Google Scholar 

  • Fridman A, Kennedy LA (2004) Plasma physics and engineering. CRC Press Taylor & Francis, UK

    Book  Google Scholar 

  • Gordiets B, Osipov A, Shelepin L (1988) Kinetic processes in gases and molecular lasers. Gordon and Breach Science Publishers, US

    Google Scholar 

  • Gorse C, Cacciatore M, Capitelli M (1984) Kinetic processes in non-equilibrium carbon monoxide discharges. I. vibrational kinetics and dissociation rates. Chem Phys 85(2):165–176

    Google Scholar 

  • Gorse C, Billing GD, Cacciatore M, Capitelli M, De Benedictis S (1987) Non-equilibrium vibrational kinetics of CO pumped by vibrationally excited nitrogen molecules: general theoretical considerations. Chem Phys 111(3):371–387

    Article  ADS  Google Scholar 

  • Ibragimova L, Smekhov G, Shatalov O (1999) Dissociation rate constants of diatomic molecules under thermal equilibrium conditions. Fluid Dyn 34(1):153–157

    Article  ADS  Google Scholar 

  • Lou G, Adamovich IV (2009) Mechanism of laser and RF plasma in vibrational nonequilibrium CO-N2 gas mixture. J Appl Phys 106(3):033304

    Article  ADS  Google Scholar 

  • Munafò A, Magin TE (2014) Modeling of stagnation-line nonequilibrium flows by means of quantum based collisional models. Phys Fluids (1994-present) 26(9):097102

    Google Scholar 

  • Nagnibeda E, Kustova E (2009) Non-equilibrium reacting gas flows: kinetic theory of transport and relaxation processes. Springer series Heat and mass transfer. Springer, Berlin/Heidelberg

    Book  MATH  Google Scholar 

  • Orsini A, Rini P, Taviani V, Fletcher D, Kustova E, Nagnibeda E (2008) State-to-state simulation of nonequilibrium nitrogen stagnation-line flows: fluid dynamics and vibrational kinetics. J Thermophys Heat Transf 22(3):390–398

    Article  Google Scholar 

  • Panesi M, Munafò A, Magin TE, Jaffe RL (2014) Nonequilibrium shock-heated nitrogen flows using a rovibrational state-to-state method. Phys Rev E 90:013009

    Article  ADS  Google Scholar 

  • Rich JW (1971) Kinetic modeling of the high-power carbon monoxide laser. J Appl Phys 42(7):2719–2730

    Article  ADS  Google Scholar 

  • Rusanov VD, Fridman AA, Sholin GV (1979) Soviet Phys Tech Phys 24:1195

    ADS  Google Scholar 

  • Sanz ME, McCarthy MC, Thaddeus P (2003) Rotational transitions of SO, SiO, and SiS excited by a discharge in a supersonic molecular beam: vibrational temperatures, Dunham coefficients, Born-Oppenheimer breakdown, and hyperfine structure. J Chem Phys 119(22):11715

    Article  ADS  Google Scholar 

  • Schmailzl U, Capitelli M (1979) Nonequilibrium dissociation of CO induced by electron-vibration and IR-laser pumping. Chem Phys 41(1–2):143–151

    Article  ADS  Google Scholar 

  • Treanor CE, Rich JW, Rehm RG (1968) Vibrational relaxation of anharmonic oscillators with exchange-dominated collisions. J Chem Phys 48(4):1798–1807

    Article  ADS  Google Scholar 

  • Xu D, Zeng M, Zhang W, Liu J (2014) Thermo-chemical nonequilibrium process in N2/N mixture with state-to-state model. ACTA Aerodyn Sin 32(03):280

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendix 1: Non-equilibrium Vibrational Distributions: General Considerations

A well developed vibrational distribution under non-equilibrium plasma conditions can be thought formed by three parts. The first part can be considered a Boltzmann one at \(\vartheta _{1}\), followed by a plateau ending in another Boltzmann distribution at the gas temperature. They reflect the dominance of elementary processes acting in the plasma. As an example the plateau can be formed due to the interplay of VV quasi-resonant processes

$$\displaystyle{ \text{A}_{2}(v) + \text{A}_{2}(v) \rightarrow \text{A}_{2}(v + 1) + \text{A}_{2}(v - 1) }$$
(7.61)

and VTM transitions.

$$\displaystyle{ \text{A}_{2}(v) + \text{A}_{2} \rightarrow \text{A}_{2}(v - 1) + \text{A}_{2} }$$
(7.62)

Limiting our analysis to these two processes and considering quasi-stationary conditions we have the following relation

$$\displaystyle{ -N_{v}N_{\text{A}_{ 2}}k_{v,v-1} - N_{v}N_{v}k_{v,v-1}^{v,v+1} + N_{ v+1}N_{v-1}k_{v+1,v}^{v-1,v} = 0 }$$
(7.63)

Considering the detailed balance principle VV resonant rates (see Eq. (7.23)) we can write

$$\displaystyle{ -N_{v}N_{\text{A}_{ 2}}k_{v,v-1} - N_{v}N_{v}k_{v+1,v}^{v-1,v}\exp \left [-\frac{\varDelta _{v,v}^{\text{VV}}} {k_{B}T} \right ] + N_{v+1}N_{v-1}k_{v+1,v}^{v-1,v} = 0 }$$
(7.64)

In the plateau we can assume, as a first approximation

$$\displaystyle{ N_{v} \approx N_{v+1} \approx N_{v-1} }$$
(7.65)

so that Eq. (7.65) can be simplified as

$$\displaystyle{ -N_{\text{A}_{ 2}}k_{v,v-1} - N_{v}k_{v+1,v}^{v-1,v}\exp \left [-\frac{\varDelta _{v,v}^{\text{VV}}} {k_{B}T} \right ] + N_{v}k_{v+1,v}^{v-1,v} = 0 }$$
(7.66)

giving

$$\displaystyle{ N_{v} = N_{\text{A}_{ 2}} \frac{k_{v,v-1}} {k_{v+1,v}^{v-1,v}}\left \{1 -\exp \left [-\frac{\varDelta _{v,v}^{\text{VV}}} {k_{B}T} \right ]\right \}^{-1} }$$
(7.67)

Assuming harmonic oscillator rates (crude approximation)

$$\displaystyle\begin{array}{rcl} k_{v,v-1} = vk_{1,0}& &{}\end{array}$$
(7.68)
$$\displaystyle\begin{array}{rcl} k_{v+1,v}^{v-1,v} = v^{2}k_{ 1,0}^{0,1}& &{}\end{array}$$
(7.69)

we get a v −1 dependence of the plateau

$$\displaystyle{ \frac{N_{v}} {N_{\text{A}_{ 2}}} = \frac{1} {v} \frac{k_{1,0}} {k_{1,0}^{0,1}}\left \{1 -\exp \left [-\frac{\varDelta _{v,v}^{\text{VV}}} {k_{B}T} \right ]\right \}^{-1} }$$
(7.70)

i.e. a plateau slightly declining with v. It is interesting to develop the energy difference in the exponential factor assuming a simple anharmonic oscillator (see Eqs. (7.16)), (7.22), and expanding the exponential in power series, the equation at the plateau becomes

$$\displaystyle{ \frac{N_{v}} {N_{\text{A}_{ 2}}} = \frac{1} {v} \frac{k_{1,0}} {k_{1,0}^{0,1}}\left \{1 -\exp \left [- \frac{2\omega _{e}\chi _{e}} {k_{B}T}\right ]\right \}^{-1} \approx \frac{1} {v} \frac{k_{1,0}} {k_{1,0}^{0,1}}\left [ \frac{2\omega _{e}\chi _{e}} {k_{B}T}\right ]^{-1}. }$$
(7.71)

The VV kinetics in the presence of a source of vibrational quanta is such to create the so called Treanor distribution (Treanor et al. 1968) i.e.

$$\displaystyle{ \left ( \frac{N_{v}} {N_{v+1}}\right ) =\exp \left [ \frac{\varepsilon _{1}} {k_{B}\vartheta _{1}} - 2 \frac{\varepsilon _{1}\chi _{e}v} {k_{B}T_{g}}\right ] }$$
(7.72)

χ e is the anharmonicity constant and \(\vartheta _{1}\) and T g are respectively the non-equilibrium vibrational temperature and the gas temperature. This distribution presents a minimum when the exponential becomes null, i.e.

$$\displaystyle{ \left (v\right )_{\text{min}} = \frac{T_{g}} {2\chi _{e}\vartheta _{1}} + \tfrac{1} {2} }$$
(7.73)

Appendix 2

Let us consider the VT terms restricting them to the mono-quantum transitions . The sequence of the following reactions can be considered

$$\displaystyle\begin{array}{rcl} \text{A}_{2}(0) + \text{A}_{2}& \rightarrow & \text{A}_{2}(1) + \text{A}_{2} {}\\ \text{A}_{2}(1) + \text{A}_{2}& \rightarrow & \text{A}_{2}(2) + \text{A}_{2} {}\\ \text{A}_{2}(2) + \text{A}_{2}& \rightarrow & \text{A}_{2}(3) + \text{A}_{2} {}\\ {\ldots }& & {\ldots } {}\\ \text{A}_{2}(v) + \text{A}_{2}& \rightarrow & \text{A}_{2}(v + 1) + \text{A}_{2} {}\\ \end{array}$$

The different equations are interconnected so that we can write for the levels

$$\displaystyle\begin{array}{rcl} \left (\frac{dN_{0}} {dt} \right )& =& -N_{0}N_{\text{A}_{ 2}}k_{0,1}^{\text{A}_{2} } + N_{1}N_{\text{A}_{ 2}}k_{1,0}^{\text{A}_{2} } {}\\ \left (\frac{dN_{1}} {dt} \right )& =& N_{0}N_{\text{A}_{ 2}}k_{0,1}^{\text{A}_{2} } - N_{1}N_{\text{A}_{ 2}}k_{1,0}^{\text{A}_{2} } - N_{1}N_{\text{A}_{ 2}}k_{1,2}^{\text{A}_{2} } + N_{2}N_{\text{A}_{ 2}}k_{2,1}^{\text{A}_{2} } {}\\ \left (\frac{dN_{2}} {dt} \right )& =& N_{1}N_{\text{A}_{ 2}}k_{1,2}^{\text{A}_{2} } - N_{2}N_{\text{A}_{ 2}}k_{2,1}^{\text{A}_{2} } - N_{2}N_{\text{A}_{ 2}}k_{2,3}^{\text{A}_{2} } + N_{3}N_{\text{A}_{ 2}}k_{3,2}^{\text{A}_{2} } {}\\ \end{array}$$

At the stationary conditions we can write

$$\displaystyle\begin{array}{rcl} \left (\frac{dN_{0}} {dt} \right )& =& -N_{0}N_{\text{A}_{ 2}}k_{0,1}^{\text{A}_{2} } + N_{1}N_{\text{A}_{ 2}}k_{1,0}^{\text{A}_{2} } = 0 {}\\ \left (\frac{dN_{1}} {dt} \right )& =& N_{0}N_{\text{A}_{ 2}}k_{0,1}^{\text{A}_{2} } - N_{1}N_{\text{A}_{ 2}}k_{1,0}^{\text{A}_{2} } - N_{1}N_{\text{A}_{ 2}}k_{1,2}^{\text{A}_{2} } + N_{2}N_{\text{A}_{ 2}}k_{2,1}^{\text{A}_{2} } = 0 {}\\ \left (\frac{dN_{2}} {dt} \right )& =& N_{1}N_{\text{A}_{ 2}}k_{1,2}^{\text{A}_{2} } - N_{2}N_{\text{A}_{ 2}}k_{2,1}^{\text{A}_{2} } - N_{2}N_{\text{A}_{ 2}}k_{2,3}^{\text{A}_{2} } + N_{3}N_{\text{A}_{ 2}}k_{3,2}^{\text{A}_{2} } = 0{}\\ \end{array}$$

Summing the first two equations we get

$$\displaystyle{ -N_{1}N_{\text{A}_{ 2}}k_{1,2}^{\text{A}_{2} } + N_{2}N_{\text{A}_{ 2}}k_{2,1}^{\text{A}_{2} } = 0 }$$

while summing the first three equations we get

$$\displaystyle{ -N_{2}N_{\text{A}_{ 2}}k_{2,3}^{\text{A}_{2} } + N_{3}N_{\text{A}_{ 2}}k_{3,2}^{\text{A}_{2} } = 0 }$$

i.e.

$$\displaystyle\begin{array}{rcl} N_{1}k_{1,2}^{\text{A}_{2} }& =& N_{2}k_{2,1}^{\text{A}_{2} } {}\\ N_{2}k_{2,3}^{\text{A}_{2} }& =& N_{3}k_{3,2}^{\text{A}_{2} } {}\\ \end{array}$$

and after applying the detailed balance principle on the rates we get

$$\displaystyle\begin{array}{rcl} \frac{N_{2}} {N_{1}}& =& \frac{k_{1,2}^{\text{A}_{2}}} {k_{2,1}^{\text{A}_{2}}} =\exp \left [\frac{\varepsilon _{2} -\varepsilon _{1}} {k_{B}T} \right ] {}\\ \frac{N_{1}} {N_{2}}& =& \frac{k_{2,3}^{\text{A}_{2}}} {k_{3,2}^{\text{A}_{2}}} =\exp \left [\frac{\varepsilon _{3} -\varepsilon _{2}} {k_{B}T} \right ] {}\\ \end{array}$$

By making the same treatment on the first equation, we get

$$\displaystyle{ \frac{N_{1}} {N_{0}} = \frac{k_{0,1}^{\text{A}_{2}}} {k_{1,0}^{\text{A}_{2}}} =\exp \left [\frac{\varepsilon _{1} -\varepsilon _{0}} {k_{B}T} \right ] }$$

The three levels submitted at the action of VT processes present at the stationary conditions a Boltzmann distribution at the gas temperature. This conclusion can be extended to the whole ladder of vibrational levels at the stationary conditions. It can be shown that also the time evolution of vibrational distributions under the action of VT mono-quantum transitions keeps its Boltzmann character if the initial condition is characterized by a Boltzmann distribution. More complex is the situation when multi-quantum VT transitions are inserted in the master equation .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer New York

About this chapter

Cite this chapter

Capitelli, M. et al. (2016). Vibrational Kinetics. In: Fundamental Aspects of Plasma Chemical Physics. Springer Series on Atomic, Optical, and Plasma Physics, vol 85. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8185-1_7

Download citation

Publish with us

Policies and ethics