Kinetic and Monte Carlo Approaches to Solve Boltzmann Equation for the Electron Energy Distribution Functions

  • Mario Capitelli
  • Roberto Celiberto
  • Gianpiero Colonna
  • Fabrizio Esposito
  • Claudine Gorse
  • Khaled Hassouni
  • Annarita Laricchiuta
  • Savino Longo
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 85)


In modeling plasmas, the characterization of free electrons is a fundamental aspect to determine the properties of the system and its departure from equilibrium. In non-equilibrium conditions, electron distribution is far from the Maxwell one, due to the complex interplay between the composition, internal level distributions of heavy species and free electrons. Two approaches are presented for the solution of Boltzmann equation: the so-called two-term approximation (P1) and the Monte Carlo method.


Monte Carlo Boltzmann Equation Electron Energy Distribution Function Negative Conductivity Simulated Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Apostolova T, Perlado J, Rivera A (2015) Femtosecond laser irradiation induced-high electronic excitation in band gap materials: a quantum-kinetic model based on Boltzmann equation. Nucl Instrum Methods Phys Res Sect B: Beam Interact Mater Atoms 352:167–170ADSCrossRefGoogle Scholar
  2. Biagi SF (1999) Monte Carlo simulation of electron drift and diffusion in counting gases under the influence of electric and magnetic fields. Nucl Instrum Methods Phys Res Sect A 421:234ADSCrossRefGoogle Scholar
  3. Braglia G, Wilhelm J, Winkler E (1985) Multi-term solutions of Boltzmann’s equation for electrons in the real gases Ar, CH4 and CO2. Lettere Al Nuovo Cimento (1971–1985) 44(6):365–378Google Scholar
  4. Braglia GL, Romanò L, Diligenti M (1982) Comment on “comparative calculations of electron-swarm properties in N2 at moderate EN values”. Phys Rev A 26(6):3689ADSCrossRefGoogle Scholar
  5. Busch C, Kortshagen U (1995) Numerical solution of the spatially inhomogeneous Boltzmann equation and verification of the nonlocal approach for an argon plasma. Phys Rev E 51(1):280ADSCrossRefGoogle Scholar
  6. Capitelli M, Celiberto R, Gorse C, Winkler R, Wilhelm J (1987) Electron energy distribution function in He-CO radio-frequency plasmas: the role of vibrational and electronic superelastic collisions. J Appl Phys 62:4398ADSCrossRefGoogle Scholar
  7. Capitelli M, Ferreira CM, Gordiets BF, Osipov R (2000) Plasma kinetics in atmospheric gases. Springer Series on Atomic, Optical, and Plasma Physics, vol. 31. Springer-Verlag Berlin HeidelbergGoogle Scholar
  8. Capitelli M, Bruno D, Laricchiuta A (2013) Fundamental aspects of plasma chemical physics: transport. Springer series on atomic, optical, and plasma physics, vol 74. Springer, New YorkGoogle Scholar
  9. Chapman S, Cowling TG (1970) The mathematical theory of non-uniform gases. Cambridge University Press, CambridgezbMATHGoogle Scholar
  10. Colonna G, Capitelli M (2001a) The influence of atomic and molecular metastable states in high enthalpy nozzle expansion nitrogen flows. J Phys D: Appl Phys 34:1812–1818ADSCrossRefGoogle Scholar
  11. Colonna G, Capitelli M (2001b) Self-consistent model of chemical, vibrational, electron kinetics in nozzle expansion. J Thermophys Heat Transf 15:308–316CrossRefGoogle Scholar
  12. Colonna G, Capitelli M (2003) The effects of electric and magnetic fields on high enthalpy plasma flows. AIAA paper 2003–4036, AIAAGoogle Scholar
  13. Colonna G, Capitelli M (2005) Plasma expansion in presence of electric and magnetic fields. In: Capitelli M (ed) 24th international symposium on rarefied gas dinamics, AIP conference proceedings, vol 762, American Institute of Physics, New York, pp 1295–1300Google Scholar
  14. Colonna G, Capitelli M (2008a) Boltzmann and master equations for magnetohydrodynamics in weakly ionized gases. J Thermophys Heat Transf 22(3):414–423CrossRefGoogle Scholar
  15. Colonna G, Capitelli M (2008b) Boltzmann and master equations for mhd in weakly ionized gases. J Thermophys Heat Transf 22(3):414–423CrossRefGoogle Scholar
  16. Colonna G, Tuttafesta M, Giordano D (2001) Numerical methods to solve Euler equations in one-dimensional steady nozzle flow. Comput Phys Commun 138:213–221ADSCrossRefzbMATHGoogle Scholar
  17. D’Angola A, Coppa G, Capitelli M, Gorse C, Colonna G (2010) An efficient energy-conserving numerical model for the electron energy distribution function in the presence of electron-electron collisions. Comput Phys Commun 181(7):1204–1211ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. Dujko S, White R, Petrović ZL, Robson R (2011) A multi-term solution of the nonconservative Boltzmann equation for the analysis of temporal and spatial non-local effects in charged-particle swarms in electric and magnetic fields. Plasma Sources Sci Technol 20(2):024013ADSCrossRefGoogle Scholar
  19. Dyatko NA, Capitelli M, Longo S, Napartovich AP (1998) Negative electron mobility in a decaying plasma. Plasma Phys Rep 24(8):691 (translated from Fizika Plasmy)ADSGoogle Scholar
  20. Dyatko NA, Napartovich AP, Sakadzic S, Petrovich Z, Raspopovich Z (2000) On the possibility of negative electron mobility in a decaying plasma. J Phys D 33(4):375ADSCrossRefGoogle Scholar
  21. Elliot CJ, Greene AE (1976) Electron energy distribution in e-beam generated Xe and Ar plsmas. J Appl Phys 47(7):2946–2953ADSCrossRefGoogle Scholar
  22. Engelhardt A, Phelps A (1963) Elastic and inelastic collision cross sections in hydrogen and deuterium from transport coefficients. Phys Rev 131(5):2115ADSCrossRefGoogle Scholar
  23. Frost L, Phelps A (1962) Rotational excitation and momentum transfer cross sections for electrons in H2 and N2 from transport coefficients. Phys Rev 127(5):1621ADSCrossRefGoogle Scholar
  24. Frost L, Phelps A (1964) Momentum-transfer cross sections for slow electrons in He, Ar, Kr, and Xe from transport coefficients. Phys Rev 136(6A):A1538ADSCrossRefGoogle Scholar
  25. Golant VE, Zilinskij AP, Sacharov IE (1980) Fundamentals of plasma physics. Wiley, New YorkGoogle Scholar
  26. Gorse C, Paniccia F, Ricard A, Capitelli M (1986) Electron energy distribution functions in He-CO vibrationally excited post discharges. J Chem Phys 84:4717ADSCrossRefGoogle Scholar
  27. Greenwood D (1958) The Boltzmann equation in the theory of electrical conduction in metals. Proc Phys Soc 71(4):585ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. Hirschfelder JO, Curtiss CF, Bird RB (1966) Molecular theory of gases and liquids. John Wiley, New YorkzbMATHGoogle Scholar
  29. Kortshagen U (1993) A non-local kinetic model applied to microwave produced plasmas in cylindrical geometry. J Phys D: Appl Phys 26(10):1691ADSCrossRefGoogle Scholar
  30. Kortshagen U, Parker G, Lawler J (1996) Comparison of Monte Carlo simulations and nonlocal calculations of the electron distribution function in a positive column plasma. Phys Rev E 54(6):6746ADSCrossRefGoogle Scholar
  31. Leyh H, Loffhagen D, Winkler R (1998) A new multi-term solution technique for the electron Boltzmann equation of weakly ionized steady-state plasmas. Comput Phys Commun 113(1):33–48ADSCrossRefzbMATHGoogle Scholar
  32. Loffhagen D, Winkler R, Braglia G (1996) Two-term and multi-term approximation of the nonstationary electron velocity distribution in an electric field in a gas. Plasma Chem Plasma Process 16(3):287–300CrossRefGoogle Scholar
  33. Longo S (2000) Monte Carlo models of electron and ion transport in non-equilibrium plasmas. Plasma Sources Sci Technol 9:468ADSCrossRefGoogle Scholar
  34. Longo S, Capitelli M (1994) A simple approach to treat anisotropic elastic collisions in Monte Carlo calculations of the electron energy distribution function in cold plasmas. Plasma Chem Plasma Process 14(1):1CrossRefGoogle Scholar
  35. Maeda K, Makabe T (1994) Radiofrequency electron swarm transport in reactive gases and plasmas. Physica Scripta 1994(T53):61CrossRefGoogle Scholar
  36. Majorana A (1991) Space homogeneous solutions of the Boltzmann equation describing electron-phonon interactions in semiconductors. Transp Theory Stat Phys 20(4):261–279ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. Mitchner M, Kruger CHJ (1973) Partially ionized gases. Wiley and Sons, New YorkGoogle Scholar
  38. Morgan W (1992) A critical evaluation of low-energy electron impact cross sections for plasma processing modeling. i: Cl2, F2, and HCl. Plasma Chem Plasma Process 12(4):449–476CrossRefGoogle Scholar
  39. Morgan WL (1991) Use of numerical optimization algorithms to obtain cross sections from electron swarm data. Phys Rev A 44(3):1677ADSCrossRefGoogle Scholar
  40. Morgan WL (1993) Test of a numerical optimization algorithm for obtaining cross sections for multiple collision processes from electron swarm data. J Phys D Appl Phys 26(2):209ADSCrossRefGoogle Scholar
  41. Ness K (1994) Multi-term solution of the Boltzmann equation for electron swarms in crossed electric and magnetic fields. J Phys D Appl Phys 27(9):1848ADSCrossRefGoogle Scholar
  42. Okhrimovskyy A, Bogaerts A, Gijbels R (2002) Electron anisotropic scattering in gases: a formula for Monte Carlo simulations. Phys Rev E 65:037402ADSCrossRefGoogle Scholar
  43. Petrović ZL, Dujko S, Marić D, Malović G, Nikitović Ž, Šaši O, Jovanović J, Stojanović V, Radmilović-Rad̄enović M (2009) Measurement and interpretation of swarm parameters and their application in plasma modelling. J Phys D Appl Phys 42(19):194002Google Scholar
  44. Phelps A (1968) Rotational and vibrational excitation of molecules by low-energy electrons. Rev Mod Phys 40(2):399ADSCrossRefGoogle Scholar
  45. Phelps A (1991) Cross sections and swarm coefficients for nitrogen ions and neutrals in N2 and argon ions and neutrals in Ar for energies from 0.1 eV to 10 keV. J Phys Chem Ref Data 20(3):557–573ADSCrossRefGoogle Scholar
  46. Phelps A, Pitchford L (1985) Anisotropic scattering of electrons by N2 and its effect on electron transport. Phys Rev A 31(5):2932ADSCrossRefGoogle Scholar
  47. Pietanza LD, Colonna G, Longo S, Capitelli M (2004a) Electron and phonon distribution relaxation in metal films under a femtosecond laser pulse. Thin Solid Films 453:506–512ADSCrossRefGoogle Scholar
  48. Pietanza LD, Colonna G, Longo S, Capitelli M (2004b) Electron and phonon relaxation in metal films perturbed by a femtosecond laser pulse. Appl Phys A 79(4–6):1047–1050ADSGoogle Scholar
  49. Pietanza LD, Colonna G, Capitelli M (2005) Electron and phonon dynamics in laser short pulses-heated metals. Appl Surf Sci 248(1):103–107ADSCrossRefGoogle Scholar
  50. Pietanza LD, Colonna G, Longo S, Capitelli M (2007) Non-equilibrium electron and phonon dynamics in metals under femtosecond laser pulses. Eur Phys J D-Atomic Mol Optical Plasma Phys 45(2):369–389Google Scholar
  51. Pitchford L, Phelps A (1982) Comparative calculations of electron-swarm properties in N2 at moderate EN values. Phys Rev A 25(1):540ADSCrossRefGoogle Scholar
  52. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992) Numerical recipes in C: the art of scientific computing. Cambridge University Press, CambridgezbMATHGoogle Scholar
  53. Rockwood SD (1973) Elastic and inelastic cross sections for electron-Hg scattering from Hg transport data. Phys Rev A 8(5):2348–2360ADSCrossRefGoogle Scholar
  54. Schaefer G, Hui P (1990) The Monte Carlo flux method. J Comput Phys 89(1):1ADSCrossRefzbMATHGoogle Scholar
  55. Shivanian E, Abbasbandy S, Alhuthali MS (2014) Exact analytical solution to the Poisson-Boltzmann equation for semiconductor devices. Eur Phys J Plus 129(6):1–8CrossRefGoogle Scholar
  56. Skullerud HR (1968) The stochastic computer simulation of ion motion in a gas subjected to a constant electric field. J Phys D 1(11):1567ADSCrossRefGoogle Scholar
  57. Spanier J, Gelbard EM (1969) Monte Carlo principles and neutron transport problems. Addison-Wesley, ReadingzbMATHGoogle Scholar
  58. Tsendin L (1995) Electron kinetics in non-uniform glow discharge plasmas. Plasma Sources Sci Technol 4(2):200ADSCrossRefGoogle Scholar
  59. Uhrlandt D, Winkler R (1996) Radially inhomogeneous electron kinetics in the dc column plasma. J Phys D Appl Phys 29(1):115ADSCrossRefGoogle Scholar
  60. Yachi S, Kitamura Y, Kitamori K, Tagashira H (1988) A multi-term Boltzmann equation analysis of electron swarms in gases. J Phys D Appl Phys 21(6):914ADSCrossRefGoogle Scholar
  61. Yachi S, Date H, Kitamori K, Tagashira H (1991) A multi-term Boltzmann equation analysis of electron swarms in gases-the time-of-flight parameters. J Phys D Appl Phys 24(4):573ADSCrossRefGoogle Scholar

Copyright information

© Springer New York 2016

Authors and Affiliations

  • Mario Capitelli
    • 1
  • Roberto Celiberto
    • 2
  • Gianpiero Colonna
    • 3
  • Fabrizio Esposito
    • 3
  • Claudine Gorse
    • 1
  • Khaled Hassouni
    • 4
  • Annarita Laricchiuta
    • 3
  • Savino Longo
    • 1
  1. 1.University of Bari and CNRBariItaly
  2. 2.Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh)Polytechnic of BariBariItaly
  3. 3.CNRBariItaly
  4. 4.Laboratoire des Sciences des Procédés et des Matériaux, CNRS-INSISParisFrance

Personalised recommendations