Advertisement

Formation of Vibrationally and Rotationally Excited Molecules During Atom Recombination at Surfaces

  • Mario Capitelli
  • Roberto Celiberto
  • Gianpiero Colonna
  • Fabrizio Esposito
  • Claudine Gorse
  • Khaled Hassouni
  • Annarita Laricchiuta
  • Savino Longo
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 85)

Abstract

The kinetic modeling of plasmo-chemical systems to be realistic must account for the heterogeneous interaction of gas-phase with surfaces. In this Chapter a survey is presented of the results obtained in the investigation of ro-vibrationally excited molecules formed in heterogeneous atomic recombination, selecting few systems of interest in technological application. In the last section a description is given of a different phenomenological method proposed for describing the recombination of atomic species on different surfaces.

Keywords

Potential Energy Surface Recombination Coefficient Recombination Probability Vibrational Distribution Quantum Exchange 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Arasa C, Gamallo P, Sayós R (2005) Adsorption of atomic oxygen and nitrogen at β-cristobalite (100): a density functional theory study. J Phys Chem B 109(31):14954–14964CrossRefGoogle Scholar
  2. Arasa C, Morón V, Busnengo H, Sayós R (2009) Eley-Rideal reaction dynamics between O atoms on β-cristobalite (100) surface: a new interpolated potential energy surface and classical trajectory study. Surf Sci 603(17):2742–2751ADSCrossRefGoogle Scholar
  3. Balat-Pichelin M, Badie J, Berjoan R, Boubert P (2003a) Recombination coefficient of atomic oxygen on ceramic materials under Earth re-entry conditions by optical emission spectroscopy. Chem Phys 291(2):181–194ADSCrossRefGoogle Scholar
  4. Balat-Pichelin M, Badie JM, Cacciatore M, Rutigliano M (2003b) Catalitycity of silica surfaces at high temperature: comparison between experimental recombination coefficient and molecular dynamic simulation. Hot Structures and Thermal Protection Systems for Space Vehicles, A. Wilson (ed.), vol. ESA SP-521. European Space Agency, ParisGoogle Scholar
  5. Bedra L, Rutigliano M, Balat-Pichelin M, Cacciatore M (2006) Atomic oxygen recombination on quartz at high temperature: experiments and molecular dynamics simulation. Langmuir 22(17):7208–7216CrossRefGoogle Scholar
  6. Billing GD (1982) On a semiclassical approach to energy transfer by atom/molecule-surface collisions. Chem Phys 70(3):223–239ADSCrossRefGoogle Scholar
  7. Billing GD (1990) The dynamics of molecule-surface interaction. Comput Phys Rep 12(6):383–450ADSCrossRefGoogle Scholar
  8. Bonfanti M, Casolo S, Tantardini GF, Martinazzo R (2011) Surface models and reaction barrier in Eley-Rideal formation of H2 on graphitic surfaces. Phys Chem Chem Phys 13(37):16680CrossRefGoogle Scholar
  9. Bourlot JL, Petit FL, Pinto C, Roueff E, Roy F (2012) Surface chemistry in the interstellar medium. I. H2 formation by Langmuir-Hinshelwood and Eley-Rideal mechanisms. Astron Astrophys 541:A76Google Scholar
  10. Cacciatore M, Billing GD (1990) Dynamical relaxation of H2(υ, j) on a copper surface. Surf Sci 232(1):35–50Google Scholar
  11. Cacciatore M, Rutigliano M (2006) Recombination processes involving H and D atoms interacting with a graphite surface: collisional data relevant to fusion plasma devices. Phys Scr T124:80–85ADSCrossRefGoogle Scholar
  12. Cacciatore M, Rutigliano M, Billing GD (1999) Eley-Rideal and Langmuir-Hinshelwood recombination coefficients for oxygen on silica surfaces. J Thermophys Heat Transf 13(2):195–203CrossRefGoogle Scholar
  13. C̆adez̆ I, Markelj S, Rupnik Z, Pelicon P (2008) Processes with neutral hydrogen and deuterium molecules relevant to edge plasma in tokamaks. J Phys Conf Ser 133:012029Google Scholar
  14. Capitelli M, Dilonardo M, Molinari E (1977) A theoretical calculation of dissociation rates of molecular hydrogen in electrical discharges. Chem Phys 20(3):417–429ADSCrossRefGoogle Scholar
  15. Colonna G, Laporta V, Celiberto R, Capitelli M, Tennyson J (2015) Non equilibrium vibrational and electron energy distribution functions in atmospheric nitrogen ns discharges: the role of electron-molecule vibrational excitation scaling laws. Plasma Sources Sci Technol 24:035004ADSCrossRefGoogle Scholar
  16. Farebrother AJ, Meijer AJ, Clary DC, Fisher AJ (2000) Formation of molecular hydrogen on a graphite surface via an Eley-Rideal mechanism. Chem Phys Lett 319(3):303–308ADSCrossRefGoogle Scholar
  17. Ferro Y, Marinelli F, Allouche A (2003) Density functional theory investigation of the diffusion and recombination of H on a graphite surface. Chem Phys Lett 368:609–615ADSCrossRefGoogle Scholar
  18. Forni A, Desjonquères M, Spanjaard D, Tantardini G (1992a) Dynamical study of the adsorption of hydrogen on the W(001) surface. Surf Sci 269–270:201–206CrossRefGoogle Scholar
  19. Forni A, Desjonquères M, Spanjaard D, Tantardini G (1992b) A monte carlo quasi-classical trajectories study of the chemisorption of hydrogen on the W(001) surface. Surf Sci 274(1):161–172ADSCrossRefGoogle Scholar
  20. Gamallo P, Martin-Gondre L, Sayós R, Crespos C, Larrégaray P (2013) Potential energy surfaces for the dynamics of elementary gas-surface processes. In: Dynamics of gas-surface interactions. Springer Series in Surface Sciences, Springer-Verlag Berlin Heidelberg, vol. 50, pp 25–50Google Scholar
  21. Greaves JC, Linnett JW (1959) Recombination of atoms at surfaces. part 6. Recombination of oxygen atoms on silica from 20 C to 600 C. Trans Faraday Soc 55:1355–1361CrossRefGoogle Scholar
  22. Guaitella O, Hübner M, Marinov D, Guerra V, Pintassilgo C, Welzel S, Röpcke J, Rousseau A (2011) Oxidation of NO into NO2 by surface adsorbed O atoms. Contrib Plasma Phys 51(2–3):176–181ADSCrossRefGoogle Scholar
  23. Guerra V (2007) Analytical model of heterogeneous atomic recombination on silicalike surfaces. IEEE Trans Plasma Sci 35(5):1397–1412ADSCrossRefGoogle Scholar
  24. Guerra V, Dias F, Loureiro J, Sa PA, Supiot P, Dupret C, Popov T (2003) Time-dependence of the electron energy distribution function in the nitrogen afterglow. IEEE Trans Plasma Sci 31(4):542–551ADSCrossRefGoogle Scholar
  25. Hansen BF, Billing GD (1997) Hydrogen and deuterium recombination rates on a copper surface. Surf Sci 373(1):L333–L338ADSCrossRefGoogle Scholar
  26. Harris J, Kasemo B (1981) On precursor mechanisms for surface reactions. Surf Sci Lett 105(2):L281–L287ADSGoogle Scholar
  27. Herdrich G, Fertig M, Petkow D, Steinbeck A, Fasoulas S (2012) Experimental and numerical techniques to assess catalysis. Prog Aerosp Sci 48–49:27–41CrossRefGoogle Scholar
  28. Hornekær L, S̆ljivanc̆anin Z̆, Xu W, Otero R, Rauls E, Stensgaard I, Lægsgaard E, Hammer B, Besenbacher F (2006) Metastable structures and recombination pathways for atomic hydrogen on the graphite (0001) surface. Phys Rev Lett 96(15):156104Google Scholar
  29. Jeloaica L, Sidis V (1999) DFT investigation of the adsorption of atomic hydrogen on a cluster-model graphite surface. Chem Phys Lett 300(1):157–162ADSCrossRefGoogle Scholar
  30. Kim YC, Boudart M (1991) Recombination of oxygen, nitrogen, and hydrogen atoms on silica: kinetics and mechanism. Langmuir 7(12):2999–3005CrossRefGoogle Scholar
  31. Latimer ER, Islam F, Price SD (2008) Studies of HD formed in excited vibrational states from atomic recombination on cold graphite surfaces. Chem Phys Lett 455(4–6):174–177ADSCrossRefGoogle Scholar
  32. Markelj S, C̆adez̆ I (2011) Production of vibrationally excited hydrogen molecules by atom recombination on Cu and W materials. J Chem Phys 134(12):124707Google Scholar
  33. Marshall T (1962) Surface recombination of nitrogen atoms upon quartz. J Chem Phys 37(10):2501ADSCrossRefGoogle Scholar
  34. Mattera L, Rosatelli F, Salvo C, Tommasini F, Valbusa U, Vidali G (1980) Selective adsorption of1H2 and2H2 on the (0001) graphite surface. Surf Sci 93(2–3):515–525ADSCrossRefGoogle Scholar
  35. Molinari E, Tomellini M (2000) Non-equilibrium vibrational kinetics in adlayers: outline of an alternative approach to catalytic processes. Chem Phys 253(2–3):367–388ADSCrossRefGoogle Scholar
  36. Molinari E, Tomellini M (2001) Non-equilibrium vibrational kinetics and ‘hot atom’ models in the recombination of hydrogen atoms on surfaces. Chem Phys 270(3):439–458ADSCrossRefGoogle Scholar
  37. Molinari E, Tomellini M (2002) Vibrational non-equilibrium and ‘hot atoms’ in the oxidation of carbon monoxide on catalytic surfaces. Chem Phys 277(3):373–386ADSCrossRefGoogle Scholar
  38. Molinari E, Tomellini M (2006a) The dissipation of vibrational quanta in exoergic surface processes and its impact on reaction rates: a case study. Surf Sci 600(2):273–286ADSCrossRefGoogle Scholar
  39. Molinari E, Tomellini M (2006b) Kinetics of atom recombination at catalytic surfaces ruled by hot atom energy distributions. Catal Today 116(1):30–37CrossRefGoogle Scholar
  40. Molinari E, Tomellini M (2010a) Evidence for vibrational excitation of the adlayer in exoergic processes at metal surfaces: H-atom abstraction and recombination and adsorption-stimulated desorption of CO. Zeitschrift für Physikalische Chemie 224:743CrossRefGoogle Scholar
  41. Molinari E, Tomellini M (2010b) The interplay of energy disposal and reaction rates in exoergic processes at metal surfaces: desorption rates in vibrationally excited adlayers. Zeitschrift für Physikalische Chemie 224:761CrossRefGoogle Scholar
  42. Molinari E, Tomellini M (2011) Kinetic analysis of high-rate and of low-rate regimes in CO oxidation on Pt group metals: evidence for vibrational excitation of the O-rich adlayer and for thermal equilibrium of the CO-rich phase. Zeitschrift für Physikalische Chemie 225:139CrossRefGoogle Scholar
  43. Morisset S (2004) Dynamique de la formation d’hydrogène moléculaire sur une poussière interstellaire. PhD thesis, Univerité de Paris XI U.F.R. Scientifique D’OrsayGoogle Scholar
  44. Morisset S, Aguillon F, Sizun M, Sidis V (2003) The dynamics of H2 formation on a graphite surface at low temperature. Phys Chem Chem Phys 5(3):506–513CrossRefGoogle Scholar
  45. Morisset S, Aguillon F, Sizun M, Sidis V (2004) Quantum dynamics of H2 formation on a graphite surface through the Langmuir Hinshelwood mechanism. J Chem Phys 121(13):6493–6501ADSCrossRefGoogle Scholar
  46. Morisset S, Aguillon F, Sizun M, Sidis V (2005) Wave-packet study of H2 formation on a graphite surface through the Langmuir-Hinshelwood mechanism. J Chem Phys 122(19):194702ADSCrossRefGoogle Scholar
  47. Morón V, Gamallo P, Martin-Gondre L, Crespos C, Larregaray P, Sayós R (2011) Recombination and chemical energy accommodation coefficients from chemical dynamics simulations: O/O2 mixtures reacting over a β-cristobalite (001) surface. Phys Chem Chem Phys 13(39):17494CrossRefGoogle Scholar
  48. Novaco AD, Wroblewski JP (1989) Rotational states of H2, HD, and D2 on graphite. Phys Rev B 39:11364–11371ADSCrossRefGoogle Scholar
  49. Petrovic ZL, Markovic VL, Pejovic MM, Gocic SR (2001) Memory effects in the afterglow: open questions on long-lived species and the role of surface processes. J Phys D Appl Phys 34(12):1756ADSCrossRefGoogle Scholar
  50. Ree J, Kim YH, Shin HK (2002) Dynamics of H2 formation on a graphite surface. Chem Phys Lett 353(5):368–378ADSCrossRefGoogle Scholar
  51. Reese J, Raimondeau S, Vlachos D (2001) Monte Carlo algorithms for complex surface reaction mechanisms: efficiency and accuracy. J Comput Phys 173(1):302–321ADSCrossRefzbMATHGoogle Scholar
  52. Rutigliano M, Cacciatore M (2008) Isotope and surface temperature effects for hydrogen recombination on a graphite surface. Chem Phys Phys Chem 9(1):171–181Google Scholar
  53. Rutigliano M, Cacciatore M (2011) Eley-Rideal recombination of hydrogen atoms on a tungsten surface. Phys Chem Chem Phys 13(16):7475CrossRefGoogle Scholar
  54. Rutigliano M, Cacciatore M, Billing GD (2001) Hydrogen atom recombination on graphite at 10 K via the Eley-Rideal mechanism. Chem Phys Lett 340(1–2):13–20ADSCrossRefGoogle Scholar
  55. Rutigliano M, Pieretti A, Cacciatore M, Sanna N, Barone V (2006) N atoms recombination on a silica surface: a global theoretical approach. Surf Sci 600(18):4239–4246ADSCrossRefGoogle Scholar
  56. Scott C (1983) Effects of nonequilibrium and surface catalysis on shuttle heat transfer-a review. AIAA paper 83-1485, 18th thermophysics conference. American Institute of Aeronautics and Astronautics, USGoogle Scholar
  57. Sha X, Jackson B (2002) First-principles study of the structural and energetic properties of H atoms on a graphite (0001) surface. Surf Sci 496(3):318–330ADSCrossRefGoogle Scholar
  58. Sha X, Jackson B, Lemoine D (2002) Quantum studies of Eley-Rideal reactions between H atoms on a graphite surface. J Chem Phys 116(16):7158–7169ADSCrossRefGoogle Scholar
  59. Sizun M, Bachellerie D, Aguillon F, Sidis V (2010) Investigation of ZPE and temperature effects on the Eley-Rideal recombination of hydrogen atoms on graphene using a multidimensional graphene-H-H potential. Chem Phys Lett 498(1–3):32–37ADSCrossRefGoogle Scholar
  60. Tomellini M (2005) Modeling of adatom vibrational populations and recombination rates in exoergic reactions. Surf Sci 577(2–3):200–210ADSCrossRefGoogle Scholar
  61. Treanor CE, Rich JW, Rehm RG (1968) Vibrational relaxation of anharmonic oscillators with exchange-dominated collisions. J Chem Phys 48(4):1798–1807ADSCrossRefGoogle Scholar
  62. Zazza C, Rutigliano M, Sanna N, Barone V, Cacciatore M (2012) Oxygen adsorption on β-quartz model surfaces: some insights from density functional theory calculations and semiclassical time-dependent dynamics. J Phys Chem A 116(9):1975–1983CrossRefGoogle Scholar

Copyright information

© Springer New York 2016

Authors and Affiliations

  • Mario Capitelli
    • 1
  • Roberto Celiberto
    • 2
  • Gianpiero Colonna
    • 3
  • Fabrizio Esposito
    • 3
  • Claudine Gorse
    • 1
  • Khaled Hassouni
    • 4
  • Annarita Laricchiuta
    • 3
  • Savino Longo
    • 1
  1. 1.University of Bari and CNRBariItaly
  2. 2.Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh)Polytechnic of BariBariItaly
  3. 3.CNRBariItaly
  4. 4.Laboratoire des Sciences des Procédés et des Matériaux, CNRS-INSISParisFrance

Personalised recommendations