Advertisement

Toward the Activation of Polyatomic Molecules by eV Processes: The CO2 Case Study

  • Mario Capitelli
  • Roberto Celiberto
  • Gianpiero Colonna
  • Fabrizio Esposito
  • Claudine Gorse
  • Khaled Hassouni
  • Annarita Laricchiuta
  • Savino Longo
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 85)

Abstract

In this Chapter upper limits to the dissociation mechanisms induced by vibrational excitation are compared with the corresponding rates from direct electron impact. Plasma-processing of CO2 under non-equilibrium conditions is considered due to the large interest nowadays existing for this molecule in energy and aerospace applications.

Keywords

Rate Coefficient Vibrational Level Dissociation Rate Vibrational Excitation Electron Energy Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aerts R, Snoeckx R, Bogaerts A (2014) In-situ chemical trapping of oxygen in the splitting of carbon dioxide by plasma. Plasma Process Polym 11(10):985–992CrossRefGoogle Scholar
  2. Armenise I, Kustova E (2013) State-to-state models for CO2 molecules: from the theory to an application to hypersonic boundary layers. Chem Phys 415:269–281ADSCrossRefGoogle Scholar
  3. Bultel A, Annaloro J (2013) Elaboration of collisional-radiative models for flows related to planetary entries into the Earth and Mars atmospheres. Plasma Sources Sci Technol 22(2):025008ADSCrossRefGoogle Scholar
  4. Capezzuto P, Cramarossa F, D’Agostino R, Molinari E (1976) Contribution of vibrational excitation to the rate of carbon dioxide dissociation in electrical discharges. J Phys Chem 80(8):882–888CrossRefGoogle Scholar
  5. Capitelli M, Molinari E (1980) Kinetics of dissociation processes in plasmas in the low and intermediate pressure range. in Plasma Chemistry II, Springer Series Topics in Current Chemistry, vol. 90, pp. 59–109. Springer, Berlin HeidelbergGoogle Scholar
  6. Capitelli M, Gorse C, Berardini M, Braglia G (1981) Influence of second-kind collisions on electron energy distributions, transport coefficients and the rate coefficients in the laser mixture CO2-N2-He-CO. Lettere Al Nuovo Cimento Series 2 31(6):231–237CrossRefGoogle Scholar
  7. Capitelli M, Colonna G, D’Ammando G, Laporta V, Laricchiuta A (2013) The role of electron scattering with vibrationally excited nitrogen molecules on non-equilibrium plasma kinetics. Phys Plasmas 20(10):101609ADSCrossRefGoogle Scholar
  8. Capitelli M, Colonna G, D’Ammando G, Laporta V, Laricchiuta A (2014) Nonequilibrium dissociation mechanisms in low temperature nitrogen and carbon monoxide plasmas. Chem Phys 438:31–36ADSCrossRefGoogle Scholar
  9. Colonna G, Capitelli M, De Benedictis S, Gorse C, Paniccia F (1991) Electron energy distribution functions in CO2 laser mixture: the effects of second kind collisions from metastable electronic states. Contrib Plasma Phys 31(6):575–579ADSCrossRefGoogle Scholar
  10. Fridman A (2012) Plasma chemistry. Cambridge University Press, CambridgeGoogle Scholar
  11. Goede A, Bongers WA, Graswinckel MF, van de Sanden MCM, Leins M, Kopecki J, Schulz A, Walker M (2014) Chemical energy storage by CO2 plasmolysis. XARMAE Workshop, Barcelona, Jan 2014Google Scholar
  12. Kozàk T, Bogaerts A (2014) Splitting of CO2 by vibrational excitation in non-equilibrium plasmas: a reaction kinetics model. Plasma Sources Sci Technol 23(4):045004ADSCrossRefGoogle Scholar
  13. Kumar M, Biswas A, Bhargav P, Reghu T, Sahu S, Pakhare J, Bhagat M, Kukreja L (2013) Theoretical estimation and experimental studies on gas dissociation in TEA CO2 laser for long term arc free operation. Opt Laser Technol 52:57–64ADSCrossRefGoogle Scholar
  14. Legasov VA, Givotov VK, Krashennikov EG, Rusanov VD, Fridman A (1977) Sov Phys Doklady 238:66Google Scholar
  15. Lowke JJ, Phelps AV, Irwin BW (1973) Predicted electron transport coefficients and operating characteristics of CO2-N2-He laser mixtures. J Appl Phys 44(10):4664–4671ADSCrossRefGoogle Scholar
  16. Park C (2008) Rate parameters for electronic excitation of diatomic molecules 1. Electron-impact processes. AIAA paper 2008–1206Google Scholar
  17. Sergeev P, Slovetsky D (1983) Vibrationally excited molecules and mechanisms of chemical and physical processes in non-equilibrium plasmas. Chem Phys 75(2):231–241ADSCrossRefGoogle Scholar
  18. Silva T, Britun N, Godfroid T, Snyders R (2014) Optical characterization of a microwave pulsed discharge used for dissociation of CO2. Plasma Sources Sci Technol 23(2):025009ADSCrossRefGoogle Scholar
  19. Taylan O, Berberoglu H (2015) Dissociation of carbon dioxide using a microhollow cathode discharge plasma reactor: effects of applied voltage, flow rate and concentration. Plasma Sources Sci Technol 24(1):015006ADSCrossRefGoogle Scholar

Copyright information

© Springer New York 2016

Authors and Affiliations

  • Mario Capitelli
    • 1
  • Roberto Celiberto
    • 2
  • Gianpiero Colonna
    • 3
  • Fabrizio Esposito
    • 3
  • Claudine Gorse
    • 1
  • Khaled Hassouni
    • 4
  • Annarita Laricchiuta
    • 3
  • Savino Longo
    • 1
  1. 1.University of Bari and CNRBariItaly
  2. 2.Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh)Polytechnic of BariBariItaly
  3. 3.CNRBariItaly
  4. 4.Laboratoire des Sciences des Procédés et des Matériaux, CNRS-INSISParisFrance

Personalised recommendations