Negative Ion H Kinetics for Fusion

  • Mario Capitelli
  • Roberto Celiberto
  • Gianpiero Colonna
  • Fabrizio Esposito
  • Claudine Gorse
  • Khaled Hassouni
  • Annarita Laricchiuta
  • Savino Longo
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 85)

Abstract

The production of negative H/D ions in cold plasmas is an important topics for fusion research. The Chapter deals with the mechanisms for the creation of negative ions including dissociative attachment from vibrationally excited H2/D2 molecules as well as from Rydberg states. Models based on the coupling of electron energy distribution function, vibrational kinetics and plasma chemistry in multipole magnetic plasmas are used and their results are validated against sophisticated experiments. Advanced particle models for the transport and extraction of negative ions from high power RF plasmas are then developed for fusion applications.

Keywords

Microwave Anisotropy Recombination Molybdenum Sine 

References

  1. Bacal M (2006) Physics aspects of negative ion sources. Nucl Fusion 46(6):S250–S259ADSCrossRefGoogle Scholar
  2. Bacal M, Hamilton GW (1979) H and D production in plasmas. Phys Rev Lett 42(23):1538ADSCrossRefGoogle Scholar
  3. Bacal M, Bruneteau AM, Nachman M (1984) Negative ion production in hydrogen plasmas confined by a multicusp magnetic field. J Appl Phys 55(1):15–24ADSCrossRefGoogle Scholar
  4. Bacal M, Baksht F, Ivanov V (1999) Increase of the effective rate constant of the dissociative attachment of electrons to hydrogen molecules due to the H2 vibrational excitation in a hydrogen stream flowing in the channel. J Phys D Appl Phys 32(22):2886–2889ADSCrossRefGoogle Scholar
  5. Baksht FG, Ivanov VG, Shkol’nik SM, Bacal M (2005) Volume production of high negative hydrogen ion density in low-voltage caesium-hydrogen discharge. AIP Conf Proc 763(1):138–142ADSCrossRefGoogle Scholar
  6. Bandyopadhyay M (2004) Studies of an inductively coupled negative hydrogen ion radio frequency source through simulations and experiments. PhD thesis Technische Universitat München, Max-Planck-Institut für Plasmaphysik, GarchingGoogle Scholar
  7. Béchu S, Soum-Glaude A, Bès A, Lacoste A, Svarnas P, Aleiferis S, Ivanov AA, Bacal M (2013) Multi-dipolar microwave plasmas and their application to negative ion production. Phys Plasmas (1994-present) 20(10):101601Google Scholar
  8. Benmeziane K, Ferdinand R, Gobin R, Gousset G, Sherman JD (2005) 2D PIC-MCC code for Electron-Hydrogen gas interaction study in H ion sources. AIP Conf Proc 763:107–121ADSCrossRefGoogle Scholar
  9. Blackwell DD, Chen FF (2001) Time-resolved measurements of the electron energy distribution function in a helicon plasma. Plasma Sources Sci Technol 10(2):226ADSCrossRefGoogle Scholar
  10. Boeuf J, Chaudhury B, Garrigues L (2012) Physics of a magnetic filter for negative ion sources. I. Collisional transport across the filter in an ideal, 1D filter. Phys Plasmas 19(11):113509Google Scholar
  11. Bogaerts A, Gijbels R, Vlcek J (1998) Collisional-radiative model for an argon glow discharge. J Appl Phys 84(1):121–136ADSCrossRefGoogle Scholar
  12. Bowers MT, Elleman DD, King J (1969) Analysis of the Ion-Molecule reactions in gaseous H2, D2, and HD by ion cyclotron resonance techniques. J Chem Phys 50(11):4787–4804ADSCrossRefGoogle Scholar
  13. Bretagne J, Delouya G, Gorse C, Capitelli M, Bacal M (1985) Electron energy distribution functions in electron-beam-sustained discharges: application to magnetic multicusp hydrogen discharges. J Phys D Appl Phys 18(5):811ADSCrossRefGoogle Scholar
  14. Bretagne J, Delouya G, Capitelli M, Gorse C, Bacal M (1986) On electron energy distribution functions in low-pressure magnetic multicusp hydrogen discharges. J Phys D Appl Phys 19(7):1197ADSCrossRefGoogle Scholar
  15. Bretagne J, Graham WG, Hopkins MB (1991) A comparison of experimental and theoretical electron energy distribution functions in a multicusp ion source. J Phys D Appl Phys 24(5):668ADSCrossRefGoogle Scholar
  16. Cacciatore M, Capitelli M, Billing GD (1989) Vibration-to-translation energy exchanges in H2 colliding with highly vibrationally excited H2 molecules. Chem Phys Lett 157(4):305–308ADSCrossRefGoogle Scholar
  17. Capitelli M (2005) Twenty five years of vibrational kinetics and negative ion production in H2 plasmas: modelling aspects. AIP Conf Proc 763:66–80ADSCrossRefGoogle Scholar
  18. Capitelli M, Gorse C (2005) Open problems in the physics of volume H-D sources. IEEE Trans Plasma Sci 33(6):1832–1844ADSCrossRefGoogle Scholar
  19. Capitelli M, Celiberto R, Eletskii A, Laricchiuta A (2001) Electron-molecule dissociation cross-sections of H2, N2 and O2 in different vibrational levels. Atomic Plasma-Mater Interact Data Fusion (APID) 9:47–64Google Scholar
  20. Capitelli M, Celiberto R, Esposito F, Laricchiuta A, Hassouni K, Longo S (2002) Elementary processes and kinetics of H2 plasmas for different technological applications. Plasma Sources Sci Technol 11(3A):A7ADSCrossRefGoogle Scholar
  21. Capitelli M, Cacciatore M, Celiberto R, De Pascale O, Diomede P, Esposito F, Gicquel A, Gorse C, Hassouni K, Laricchiuta A, Longo S, Pagano D, Rutigliano M (2006) Vibrational kinetics, electron dynamics and elementary processes in H2 and D2 plasmas for negative ion production: modelling aspects. Nucl Fusion 46(6):S260–S274ADSCrossRefGoogle Scholar
  22. Capitelli M, Celiberto R, Colonna G, D’Ammando G, De Pascale O, Diomede P, Esposito F, Gorse C, Laricchiuta A, Longo S, Pietanza LD, Taccogna F (2011) Plasma kinetics in molecular plasmas and modeling of reentry plasmas. Plasma Phys Control Fusion 53(12):124007ADSCrossRefGoogle Scholar
  23. Celiberto R, Janev R, Laricchiuta A, Capitelli M, Wadehra J, Atems D (2001) Cross section data for electron-impact inelastic processes of vibrationally excited molecules of hydrogen and its isotopes. Atomic Data Nucl Data Tables 77(2):161–213ADSCrossRefGoogle Scholar
  24. Celiberto R, Capitelli M, Laricchiuta A (2002) Towards a cross section database of excited atomic and molecular hydrogen. Phys Scr 2002(T96):32CrossRefGoogle Scholar
  25. Chibisov MI, Mitchell JBA, Van der Donk PJT, Yousif FB, Morgan TJ (1997) Dissociative recombination of vibrationally excited H2 + ions: high-Rydberg-state formation. Phys Rev A 56:443–456ADSCrossRefGoogle Scholar
  26. Datskos PG, Pinnaduwage LA, Kielkopf JF (1997) Photophysical and electron attachment properties of ArF-excimer-laser irradiated H2. Phys Rev A 55(6):4131–4142ADSCrossRefGoogle Scholar
  27. Diomede P, Longo S (2008) Velocity distribution of H ions in low temperature hydrogen plasma. IEEE Trans Plasma Sci 36(4):1600–1606ADSCrossRefGoogle Scholar
  28. Diomede P, Longo S (2010) Monte Carlo Cs+ transport from a point source in negative ion sources: effect of the deuterium flow. Plasma Sources Sci Technol 19(1):015019ADSCrossRefGoogle Scholar
  29. Diomede P, Longo S, Capitelli M (2005) Vibrational excitation and negative ion production in radio frequency parallel plate H2 plasmas. Eur Phys J D 33(2):243–251ADSCrossRefGoogle Scholar
  30. Diomede P, Longo S, Capitelli M (2006) Charged particle dynamics and molecular kinetics in the hydrogen postdischarge plasma. Phys Plasmas 13(11):113505ADSCrossRefGoogle Scholar
  31. Diomede P, Hassouni K, Longo S, Capitelli M (2007) Self-consistent modeling of the effect of wall-neutral reactions on parallel plate radio frequency discharge plasma in pure hydrogen. IEEE Trans Plasma Sci 35(5):1241–1246ADSCrossRefGoogle Scholar
  32. Eenshuistra PJ, Bonnie JHM, Los J, Hopman HJ (1988) Observation of exceptionally high vibrational excitation of hydrogen molecules formed by wall recombination. Phys Rev Lett 60:341–344ADSCrossRefGoogle Scholar
  33. Fantz U, Falter H, Franzen P, Wünderlich D, Berger M, Lorenz A, Kraus W, McNeely P, Riedl R, Speth E (2006a) Spectroscopy–a powerful diagnostic tool in source development. Nucl Fusion 46(6):S297ADSCrossRefGoogle Scholar
  34. Fantz U, Falter HD, Franzen P, Speth E, Hemsworth R, Boilson D, Krylov A (2006b) Plasma diagnostic tools for optimizing negative hydrogen ion sources. Rev Sci Instrum 77(3):03A516Google Scholar
  35. Fubiani G, Boeuf JP (2013) Role of positive ions on the surface production of negative ions in a fusion plasma reactor type negative ion source–Insights from a three dimensional particle-in-cell Monte Carlo collisions model. Phys Plasmas 20(11):113511ADSCrossRefGoogle Scholar
  36. Fukumasa O (1989) Numerical studies on the optimisation of volume-produced H ions in the single-chamber system. J Phys D Appl Phys 22(11):1668ADSCrossRefGoogle Scholar
  37. Fukumasa O, Mori S (2005) Isotope effect of H/D volume production in Low-Pressure H2/D2 plasmas – negative ion densities versus plasma parameters. AIP Conf Proc 763:57–65ADSCrossRefGoogle Scholar
  38. Fukumasa O, Shinoda M (1998) Pulse modulation for plasma parameter control and optimization of volume H ion source. Rev Sci Instrum 69(2):938–940ADSCrossRefGoogle Scholar
  39. Fukumasa O, Nakano T, Mori S, Oohara W, Tsumori K, Takeiri Y, Surrey E, Simonin A (2009) Enhancement of D negative ion volume production in pure deuterium plasmas. AIP Conf Proc 1097:118–126ADSCrossRefGoogle Scholar
  40. Gaboriau F, Boeuf JP (2014) Chemical kinetics of low pressure high density hydrogen plasmas: application to negative ion sources for ITER. Plasma Sources Sci Technol 23(6):065032ADSCrossRefGoogle Scholar
  41. Garscadden A, Nagpal R (1995) Non-equilibrium electronic and vibrational kinetics in H2-N2 and H2 discharges. Plasma Sources Sci Technol 4(2):268ADSCrossRefGoogle Scholar
  42. Goretsky VP, Ryabtsev AV, Soloshenko IA, Shchedrin AI (2007) Research of the negative ion source based on reflective discharge with and without addition of cesium. AIP Conf Proc 925:58–68ADSCrossRefGoogle Scholar
  43. Gorse C, Capitelli M (1992) Enhanced production of negative ions in low-pressure hydrogen and deuterium pulsed discharges: theoretical calculations. Phys Rev A 46(4):2176–2177ADSCrossRefGoogle Scholar
  44. Gorse C, Capitelli M, Bretagne J, Bacal M (1985) Vibrational excitation and negative-ion production in magnetic multicusp hydrogen discharges. Chem Phys 93(1):1–12ADSCrossRefGoogle Scholar
  45. Gorse C, Capitelli M, Bacal M, Bretagne J, Laganà A (1987) Progress in the non-equilibrium vibrational kinetics of hydrogen in magnetic multicusp H ion sources. Chem Phys 117(2):177–195ADSCrossRefGoogle Scholar
  46. Gorse C, Celiberto R, Cacciatore M, Laganà A, Capitelli M (1992) From dynamics to modeling of plasma complex systems: negative ion (H) sources. Chem Phys 161(1–2):211–227ADSCrossRefGoogle Scholar
  47. Gorse C, Capitelli M, Celiberto R, Iasillo D, Longo S (1996) Recent advances in H2/D2 plasma kinetics. AIP Conf Proc 380:109–117ADSCrossRefGoogle Scholar
  48. Hall RI, Čadež I, Landau M, Pichou F, Schermann C (1988) Vibrational excitation of hydrogen via recombinative desorption of atomic hydrogen gas on a metal surface. Phys Rev Lett 60:337–340ADSCrossRefGoogle Scholar
  49. Hassouni K, Gicquel A, Capitelli M (1998) The role of dissociative attachment from Rydberg states in enhancing H concentration in moderate- and low-pressure H2 plasma sources. Chem Phys Lett 290(4–6):502–508ADSCrossRefGoogle Scholar
  50. Hassouni K, Gicquel A, Capitelli M, Loureiro J (1999) Chemical kinetics and energy transfer in moderate pressure H2 plasmas used in diamond MPACVD processes. Plasma Sources Sci Technol 8(3):494ADSCrossRefGoogle Scholar
  51. Hassouni K, Silva F, Gicquel A (2010) Modelling of diamond deposition microwave cavity generated plasmas. J Phys D Appl Phys 43(15):153001ADSCrossRefGoogle Scholar
  52. Hatayama A, Makino K, Sakurabayasi T, Miyamoto K, Ogasawara M, Bacal M (2004) Numerical analysis of negative ion temperature in a negative ion source. Rev Sci Instrum 75(5):1650–1652ADSCrossRefGoogle Scholar
  53. Hiskes JR (1980) Cross sections for the vibrational excitation of the H2(\(X^{1}\varSigma _{g}^{+}\)) state via electron collisional excitation of the higher singlet states. J Appl Phys 51(9):4592–4594ADSCrossRefGoogle Scholar
  54. Hiskes JR (1996a) Molecular Rydberg states in hydrogen negative ion discharges. Appl Phys Lett 69(6):755ADSCrossRefGoogle Scholar
  55. Hiskes JR (1996b) The role of high Rydberg states in the generation of negative ions in negative-ion discharges. AIP Conf Proc 380:61–75ADSCrossRefGoogle Scholar
  56. Hiskes JR, Karo AM (1984) Generation of negative ions in tandem high-density hydrogen discharges. J Appl Phys 56(7):1927–1938ADSCrossRefGoogle Scholar
  57. Hiskes JR, Karo AM (1989) Analysis of the H2 vibrational distribution in a hydrogen discharge. Appl Phys Lett 54(6):508–510ADSCrossRefGoogle Scholar
  58. Hiskes JR, Karo AM, Willmann PA (1985) Optimum extracted negative-ion current densities from tandem high-density systems. J Appl Phys 58(5):1759–1764ADSCrossRefGoogle Scholar
  59. Hopkins MB, Mellon KN (1991) Enhanced production of negative ions in low-pressure hydrogen and deuterium discharges. Phys Rev Lett 67(4):449–452ADSCrossRefGoogle Scholar
  60. Hopkins MB, Bacal M, Graham WG (1991) Enhanced volume production of negative ions in the post discharge of a multicusp hydrogen discharge. J Appl Phys 70(4):2009–2014ADSCrossRefGoogle Scholar
  61. Hopman H, Heeren R (1992) Negative ion source technology. In: Capitelli M, Gorse C (eds) Plasma technology. Springer US, pp 185–201Google Scholar
  62. Huh SR, Kim NK, Jung BK, Chung KJ, Hwang YS, Kim GH (2015) Global model analysis of negative ion generation in low-pressure inductively coupled hydrogen plasmas with bi-maxwellian electron energy distributions. Phys Plasmas 22(3):033506ADSCrossRefGoogle Scholar
  63. IAEA (2013) Atomic and Molecular Data Unit. www-amdis.iaea.org
  64. Ichihara A, Iwamoto O, Janev RK (2000) Cross sections for the reaction H+ + H2(v=0-14) → H+H2 + at low collision energies. J Phys B Atomic Mol Opt Phys 33(21):4747ADSCrossRefGoogle Scholar
  65. Janev RK, Reiter D, Samm U (2003) Collisional processes in low temperature hydrogen plasmas. Institut für Plasmaphysik, Jülich, Germany Forschungszentrum Jülich Rep. 4105Google Scholar
  66. Ji-Zhong S, Xian-Tao L, Jing B, De-Zhen W (2012) Using short pulses to enhance the production rate of vibrationally excited hydrogen molecules in hydrogen discharge. Chin Phys B 21(5):055205ADSCrossRefGoogle Scholar
  67. Karpas Z, Anicich V, Huntress WT (1979) An ion cyclotron resonance study of reactions of ions with hydrogen atoms. J Chem Phys 70(6):2877–2881ADSCrossRefGoogle Scholar
  68. Kim YK, Rudd ME (1994) Binary-encounter-dipole model for electron-impact ionization. Phys Rev A 50(5):3954–3967ADSCrossRefGoogle Scholar
  69. Kramers HA (1923) XCIII. On the theory of x-ray absorption and of the continuous x-ray spectrum. Philosophical Magazine Series 6 46(275):836–871CrossRefGoogle Scholar
  70. Laricchiuta A, Celiberto R, Esposito F, Capitelli M (2006) State-to-state cross sections for H2 and its isotopic variants. Plasma Sources Sci Technol 15(2):S62ADSCrossRefGoogle Scholar
  71. Longo S (2000) Monte Carlo models of electron and ion transport in non-equilibrium plasmas. Plasma Sources Sci Technol 9(4):468ADSMathSciNetCrossRefGoogle Scholar
  72. Matveyev AA, Silakov VP (1995) Kinetic processes in a highly-ionized non-equilibrium hydrogen plasma. Plasma Sources Sci Technol 4(4):606ADSCrossRefGoogle Scholar
  73. Mosbach T (2002) Do hydrogenic Rydberg molecules represent an efficient channel for the production of H ions in low temperature plasmas? Conference paper 16th European conference on atomic and molecular physics of ionized gases (ESCAMPIG16), Grenoble, France pp 231–232Google Scholar
  74. Mosbach T (2005) Population dynamics of molecular hydrogen and formation of negative hydrogen ions in a magnetically confined low temperature plasma. Plasma Sources Sci Technol 14(3):610ADSCrossRefGoogle Scholar
  75. Mosbach T, Katsch HM, Döbele HF (1998) Temporal behaviour of the H density in a pulsed multipole discharge investigated by the photodetachment technique. Plasma Sources Sci Technol 7(1):75ADSCrossRefGoogle Scholar
  76. Mosbach T, Katsch HM, Döbele HF (2000) In situ diagnostics in plasmas of electronic-ground-state hydrogen molecules in high vibrational and rotational states by laser-induced fluorescence with vacuum-ultraviolet radiation. Phys Rev Lett 85(16):3420ADSCrossRefGoogle Scholar
  77. NIST (2013) Atomic spectra database and lines. physics.nist.gov/cgi-bin/AtData/lines_form
  78. Pagano D, Gorse C, Capitelli M (2006) Atomic wall recombination and volume negative ion production. Rev Sci Instrum 77(3):03A505Google Scholar
  79. Pagano D, Gorse C, Capitelli M (2007) Modeling multicusp negative-ion sources. IEEE Trans Plasma Sci 35(5):1247–1259ADSCrossRefGoogle Scholar
  80. Pinnaduwage LA, Christophorou LG (1993) H formation in laser-excited molecular hydrogen. Phys Rev Lett 70(6):754–757ADSCrossRefGoogle Scholar
  81. Pinnaduwage LA, Ding WX, McCorkle DL, Lin SH, Mebel AM, Garscadden A (1999) Enhanced electron attachment to Rydberg states in molecular hydrogen volume discharges. J Appl Phys 85(10):7064–7069ADSCrossRefGoogle Scholar
  82. Shakhatov V, Lebedev Y (2011) Collisional-radiative model of hydrogen low-temperature plasma: processes and cross sections of electron-molecule collisions. High Temp 49(2):257–302CrossRefGoogle Scholar
  83. Shibata T, Kashiwagi M, Inoue T, Hatayama A, Hanada M (2013) Numerical study of atomic production rate in hydrogen negative ion sources with the effect of non-equilibrium electron energy distribution function. J Appl Phys 114(14):143301ADSCrossRefGoogle Scholar
  84. Svarnas P, Breton J, Bacal M, Mosbach T (2006) Pressure optimization for H ion production in an electron cyclotron resonance-driven and a filamented source. Rev Sci Instrum 77(3):03A532Google Scholar
  85. Taccogna F, Schneider R, Longo S, Capitelli M (2007) Modeling of a negative ion source. I. Gas kinetics and dynamics in the expansion region. Phys Plasmas 14(7):073503Google Scholar
  86. Taccogna F, Longo S, Capitelli M, Schneider R (2008a) Negative-ion-source modeling: from expansion to extraction region. IEEE Trans Plasma Sci 36(4):1589–1599ADSCrossRefGoogle Scholar
  87. Taccogna F, Schneider R, Longo S, Capitelli M (2008b) Modeling of a negative ion source. II. Plasma-gas coupling in the extraction region. Phys Plasmas 15(10):103502Google Scholar
  88. Taccogna F, Minelli P, Longo S, Capitelli M, Schneider R (2010) Modeling of a negative ion source. III. Two-dimensional structure of the extraction region. Phys Plasmas 17(6):063502Google Scholar
  89. Taccogna F, Minelli P, Diomede P, Longo S, Capitelli M, Schneider R (2011) Particle modelling of the hybrid negative ion source. Plasma Sources Sci Technol 20(2):024009ADSCrossRefGoogle Scholar
  90. Taccogna F, Minelli P, Longo S (2013) Three-dimensional structure of the extraction region of a hybrid negative ion source. Plasma Sources Sci Technol 22(4):045019ADSCrossRefGoogle Scholar
  91. Tawara H, Itikawa Y, Nishimura H, Yoshino M (1990) Cross sections and related data for electron collisions with hydrogen molecules and molecular ions. J Phys Chem Ref Data 19(3):617–636ADSCrossRefGoogle Scholar
  92. Toader EI (2004) Production of negative hydrogen ions using a low-pressure reflex discharge source. Nukleonika 51(1):29–35Google Scholar
  93. Velasco AJC, Dougar-Jabon V (2004) Electron cyclotron resonance discharge as a source for hydrogen and deuterium ions production. 12th International congress on plasma physics, 25–29 Oct 2004, Nice, arXiv:physics/0411128Google Scholar
  94. Zorat R, Goss J, Boilson D, Vender D (2000) Global model of a radiofrequency H2 plasma in DENISE. Plasma Sources Sci Technol 9(2):161ADSCrossRefGoogle Scholar

Copyright information

© Springer New York 2016

Authors and Affiliations

  • Mario Capitelli
    • 1
  • Roberto Celiberto
    • 2
  • Gianpiero Colonna
    • 3
  • Fabrizio Esposito
    • 3
  • Claudine Gorse
    • 1
  • Khaled Hassouni
    • 4
  • Annarita Laricchiuta
    • 3
  • Savino Longo
    • 1
  1. 1.University of Bari and CNRBariItaly
  2. 2.Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh)Polytechnic of BariBariItaly
  3. 3.CNRBariItaly
  4. 4.Laboratoire des Sciences des Procédés et des Matériaux, CNRS-INSISParisFrance

Personalised recommendations