Real Effects: II. Virial Corrections

  • Mario CapitelliEmail author
  • Gianpiero Colonna
  • Antonio D’Angola
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 66)


This chapter starts defining statistical ensembles and the relative partition functions which are the starting point to completely characterize the thermodynamic properties of a system. It must be noted that the partition functions can be determined in the framework of the classical or quantum theory, considering the proper statistics. In this book, we consider mainly nondegenerate plasmas, where the effects of Pauli exclusion principle (Bose/Einstein or Fermi/Dirac distributions) are not relevant, and the Boltzmann statistics can be used.


Partition Function Canonical Ensemble Virial Coefficient Trial Move Canonical Partition Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allen MP, Tildesley DJ (1989) Computer Simulation of Liquids. 2nd ed. Oxford University Press, USAGoogle Scholar
  2. Biolsi L, Holland PM (1996) Thermodynamic properties of oxygen molecules at high temperatures. International Journal of Thermophysics 17(1):191–200ADSCrossRefGoogle Scholar
  3. Capitelli M, Ficocelli E (1977) Thermodynamic properties of Ar − H 2. Revue Internationale des Hautes Temperatures et des Refractaires 14:195–200Google Scholar
  4. Capitelli M, Lamanna UT (1976) Second virial coefficients of oxygen–oxygen and carbon–oxygen interactions in different electronic states. Chemical Physics 14:261–266ADSCrossRefGoogle Scholar
  5. D’Angola A, Colonna G, Gorse C, Capitelli M (2008) Thermodynamic and transport properties in equilibrium air plasmas in a wide pressure and temperature range. European Physical Journal D 46:129–150ADSCrossRefGoogle Scholar
  6. Fisher BB (1966) Calculation of the thermal properties of hydrogen. Tech. Rep. LA–3364, Los Alamos Scientific LaboratoryGoogle Scholar
  7. Frenkel D, Smit B (2002) Understanding molecular simulation : from algorithms to applications, 2nd edn. Academic PressGoogle Scholar
  8. Guidotti C, Arrighini G, Capitelli M, Lamanna UT (1976) Second virial coefficients of ground state nitrogen atom. Zeitschrift für Naturforschung 31a:1722–1724Google Scholar
  9. Hill TL (1955) Molecular clusters in imperfect gases. Journal Chemical Physics 23(4):617–623CrossRefGoogle Scholar
  10. Hilsenrath J, Klein M (1965) Tables of thermodynamic properties of air in chemical equilibrium including second virial corrections from 1500 K to 15000 K. Tech. Rep. AEDC–TR–65–58, AEDCGoogle Scholar
  11. Hirschfelder JO, Curtiss CF, Bird RB (1966) Molecular Theory of Gases and Liquids, 2nd edn. Structure of Matter Series, John Wiley & SonsGoogle Scholar
  12. Huang K (1987) Statistical Mechanics. John Wiley & SonsGoogle Scholar
  13. Johnson JH, Panagiotopoulos AZ, Gubbins KE (1994) Reactive canonical Monte Carlo - a new simulation technique for reacting or associating fluids. Molecular Physics 81(3):717–733ADSCrossRefGoogle Scholar
  14. Landau D, Lifshitz E (1986) Statistical Physics. Pergamon Press, OxfordGoogle Scholar
  15. Lisal M, Smith W, Nezbeda I (2000) Computer simulation of the thermodynamic properties of high–temperature chemically–reacting plasmas. Journal of Chemical Physics 113(12): 4885–4895ADSCrossRefGoogle Scholar
  16. Lisal M, Smith W, Bures M, Vacek V, Navratil J (2002) REMC computer simulations of the thermodynamic properties of argon and air plasmas. Molecular Physics 100:2487–2497ADSCrossRefGoogle Scholar
  17. Pagano D, Casavola A, Pietanza LD, Colonna G, Giordano D, Capitelli M (2008) Thermodynamic properties of high-temperature jupiter-atmosphere components. Journal of Thermophysics and Heat Transfer 22(3):8CrossRefGoogle Scholar
  18. Pagano D, Casavola A, Pietanza LD, Capitelli M, Colonna G, Giordano D, Marraffa L (2009) Internal partition functions and thermodynamic properties of high-temperature jupiter-atmosphere species from 50 K to 50,000 K. Tech. Rep. STR-257Google Scholar
  19. Pirani F, Albertí M, Castro A, Teixidor MM, Cappelletti D (2004) Atom–bond pairwise additive representation for intermolecular potential energy surfaces. Chemical Physics Letters 394 (1–3):37–44ADSCrossRefGoogle Scholar
  20. Ree FH (1983) Solubility of hydrogen-helium mixtures in fluid phases to 1 GPa. The Journal of Physical Chemistry 87(15):2846–2852CrossRefGoogle Scholar
  21. Smith W, Lisal M, Nezbeda I (2006) Molecular-level Monte Carlo simulation at fixed entropy. Chemical Physics Letters 426(4-6):436–440ADSCrossRefGoogle Scholar
  22. Smith WR, Triska B (1994) The reaction ensemble method for the computer simulation of chemical and phase equilibria. i. theory and basic examples. The Journal of Chemical Physics 100(4):3019–3027Google Scholar
  23. Turner H, Brennan J, Lisal M, Smith W, Johnson J, Gubbins K (2008) Simulation of chemical reaction equilibria by the reaction ensemble Monte Carlo method: a review. Molecular Simulation 34:119–146CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Mario Capitelli
    • 1
    Email author
  • Gianpiero Colonna
    • 2
  • Antonio D’Angola
    • 3
  1. 1.Dipartimento di ChimicaUniversità di BariBariItaly
  2. 2.Istituto di Metodologie Inorganiche e dei Plasmi (IMIP) Consiglio Nazionale delle Ricerche (CNR)BariItaly
  3. 3.Dipartimento di Ingegneria e Fisica dell’Ambiente (DIFA)University of BasilicataPotenzaItaly

Personalised recommendations