Thermodynamics of Planetary Plasmas

  • Mario CapitelliEmail author
  • Gianpiero Colonna
  • Antonio D’Angola
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 66)


In this chapter, we report, in graphical and tabular form, the thermodynamic properties of high temperature planetary atmospheres (Earth, Mars, Jupiter).


Partition Function Thermodynamic Property Specific Enthalpy Specific Entropy Maximum Percentage Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bishnuy PS, Hamirouney D, Metghalchiy M, Keckz JC (1997) Constrained-equilibrium calculations for chemical systems subject to generalized linear constraints using the nasa and stanjan equilibrium programs. Combustion Theory and Modelling 1:295ADSCrossRefGoogle Scholar
  2. Bottin B, Abeele DV, Carbonaro M, Degrez G (1999) Thermodynamic and transport properties for inductive plasma modeling. Journal of Thermophysics and Heat Transfer 13(3):343–350CrossRefGoogle Scholar
  3. Boulos MI, Fauchais P, Pfender E (1994) Thermal Plasmas: Fundamentals and Applications: Vol 1, vol 1. Plenum Press, New YorkGoogle Scholar
  4. Capitelli M, Cramarossa F, Provenzano G, Molinari E (1968) A FORTRAN IV programme for the computation of equilibrium compositions of gas mixtures at high temperature. La Ricerca Scientifica 38(7–8):695–701Google Scholar
  5. Capitelli M, Colonna G, Gorse C, Giordano D (1994) Survey of methods of calculating high–temperature thermodynamic properties of air species. Tech. Rep. STR-236, European Space AgencyGoogle Scholar
  6. Colonna G (2007) Improvements of hierarchical algorithm for equilibrium calculation. Computer Physics Communications 177:493–499ADSzbMATHCrossRefGoogle Scholar
  7. Colonna G, D’Angola A (2004) A hierarchical approach for fast and accurate equilibrium calculation. Computer Physics Communications 163:177–190ADSCrossRefGoogle Scholar
  8. D’Angola A, Colonna G, Gorse C, Capitelli M (2008) Thermodynamic and transport properties in equilibrium air plasmas in a wide pressure and temperature range. European Physical Journal D 46:129–150ADSCrossRefGoogle Scholar
  9. Giordano D, Capitelli M, Colonna G, Gorse C (1994) Tables of internal partition functions and thermodynamic properties of high–temperature air species from 50 K to 10000 K. Tech. Rep. STR-237, European Space AgencyGoogle Scholar
  10. Gordon S, McBride B (1994) Computer program for calculation of complex chemical equilibrium compositions and applications. NASA Reference Publication 1311, NASAGoogle Scholar
  11. Henderson SJ, Menart JA (2008) Equilibrium properties of high–temperature air for a number of pressures. Journal of Thermophysics and Heat Transfer 22(4):718–726CrossRefGoogle Scholar
  12. Lisal M, Smith W, Bures M, Vacek V, Navratil J (2002) REMC computer simulations of the thermodynamic properties of argon and air plasmas. Molecular Physics 100:2487–2497ADSCrossRefGoogle Scholar
  13. McDonald CM, Floudas CA (1997) Glopeq: A new computational tool for the phase and chemical equilibrium problem. Computers & Chemical Engineering 21:1CrossRefGoogle Scholar
  14. Meintjes K, Morgan AP (1985) Performance of algorithms for calculating the equilibrium composition of a mixture of gases. Journal of Computational Physics 60:219ADSzbMATHCrossRefGoogle Scholar
  15. Pagano D, Casavola A, Pietanza LD, Capitelli M, Colonna G, Giordano D, Marraffa L (2009) Internal partition functions and thermodynamic properties of high-temperature jupiter-atmosphere species from 50 K to 50,000 K. Tech. Rep. STR-257Google Scholar
  16. Phoenix AV, Heidemann RA (1998) A non-ideal multiphase chemical equilibrium algorithm. Fluid Phase Equilibria 150–151:255CrossRefGoogle Scholar
  17. Reynolds W (1986.) The element potential method for chemical equilibrium analysis: implementation in the interactive program stanjan. Stanford University Report ME 270 HO 7, Stanford University, StanfordGoogle Scholar
  18. Smith WR, Missen RW (1982) Chemical Reaction Equilibrium Analysis: Theory and Algorithms. John Wiley and Sons, New YorkGoogle Scholar
  19. Sofyan Y, Ghajar AJ, Gasem KAM (2003) Multiphase equilibrium calculations using gibbs minimization techniques. Industrial & Engineering Chemistry Research 42:3786CrossRefGoogle Scholar
  20. Villars DS (1960) Computation of complicated combustion equilibria on a high-speed digital computer. In: Bahn G, Zuckowsky E (eds) Proceedings of the First Conference on the Kinetics Equilibria and Performance of High Temperature Systems, Western States Section of the Combustion Institute, Butterworths Scientific Publications, Washington D.C., p 18Google Scholar
  21. Yos J (1967) Revised transport properties of high temperature air and its components. Avco rad-63-7Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Mario Capitelli
    • 1
    Email author
  • Gianpiero Colonna
    • 2
  • Antonio D’Angola
    • 3
  1. 1.Dipartimento di ChimicaUniversità di BariBariItaly
  2. 2.Istituto di Metodologie Inorganiche e dei Plasmi (IMIP) Consiglio Nazionale delle Ricerche (CNR)BariItaly
  3. 3.Dipartimento di Ingegneria e Fisica dell’Ambiente (DIFA)University of BasilicataPotenzaItaly

Personalised recommendations