Advertisement

Vibrational Excitation and Transport Properties of Reacting Gases: Beyond the Eucken Approximation

  • Mario Capitelli
  • Domenico Bruno
  • Annarita Laricchiuta
Chapter
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 74)

Abstract

In Chap.1 we have introduced the Eucken approximation as a useful tool to calculate the thermal conductivity contribution of the internal states of molecules. In the case of vibration a closed form appears as a result of the following hypotheses:

Keywords

Vibrational Level Direct Simulation Monte Carlo Nozzle Flow Vibrational Quantum Number Direct Simulation Monte Carlo Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Armenise I, Capitelli M, Colonna G, Gorse C (1996) Nonequilibrium vibrational kinetics in the boundary layer of re-entering bodies. J Thermophys Heat Transf 10(3):397–405CrossRefGoogle Scholar
  2. Armenise I, Capitelli M, Gorse C, Cacciatore M, Rutigliano M (2000) Non equilibrium vibrational kinetics of a O2/O mixtures hitting a catalytic surface. J Spacecr Rockets 37(3):318–323CrossRefADSGoogle Scholar
  3. Armenise I, Barbato M, Capitelli M, Kustova E (2006) State to state catalytic models, kinetics and transport in hypersonic boundary layers. J Thermophys Heat Transf 20(3):465–476CrossRefGoogle Scholar
  4. Brun R (2009) Introduction to Reactive Gas Dynamics. Oxford University Press, OxfordMATHCrossRefGoogle Scholar
  5. Bruno D, Capitelli M, Longo S (1998) DSMC modelling of vibrational and chemical kinetics for a reacting gas mixture. Chem Phys Lett 289:141CrossRefADSGoogle Scholar
  6. Bruno D, Capitelli M, Kustova E, Nagnibeda E (1999) Non-equilibrium vibrational distributions and transport coefficients of N2(υ)–N mixtures. Chem Phys Lett 308:463–472CrossRefADSGoogle Scholar
  7. Bruno D, Capitelli M, Cervellera V, Longo S (2001) Calculation of transport coefficients with vibrational nonequilibrium. J Thermophys Heat Transf 15(1):70–75CrossRefGoogle Scholar
  8. Cacciatore M, Rutigliano M, Billing GD (1999) Eley-Rideal and Langmuir-Hinshelwood recombination coefficients for oxygen on silica surfaces. J Thermophys Heat Transf 13(2):195–203CrossRefGoogle Scholar
  9. Capitelli M (ed) (1986) Non-equilibrium vibrational kinetics. In: Topics in current physics, vol 36. Springer, BerlinGoogle Scholar
  10. Capitelli M, Molinari E (1980) Kinetics of dissociation processes in plasmas in the low and intermediate pressure range. Top Curr Chem 90:59–109CrossRefGoogle Scholar
  11. Colonna G, Tuttafesta M, Capitelli M, Giordano D (1999) Non-Arrhenius NO formation rate in one-dimensional nozzle airflow. J Thermophys Heat Transf 13:372CrossRefGoogle Scholar
  12. Gorbachev YE, Gordillo-Vàzquez FJ, Kunc JA (1997) Diameters of rotationally and vibrationally excited diatomic molecules. Physica A: Stat Mech Appl 247(1–4):108–120CrossRefGoogle Scholar
  13. Hirschfelder JO, Curtiss CF, Bird RB (1966) Molecular theory of gases and liquids. Wiley, New YorkGoogle Scholar
  14. Kustova E, Nagnibeda E, Armenise I, Capitelli M (2002) Nonequilibrium kinetics and heat transfer in O2/O mixtures near catalytic surfaces. J Thermophys Heat Transf 16(2):238–244CrossRefGoogle Scholar
  15. Kustova EV, Nagnibeda EA (1998) Transport properties of a reacting gas mixture with strong vibrational and chemical nonequilibrium. Chem Phys 233(1):57–75CrossRefGoogle Scholar
  16. Nagnibeda E, Kustova E (2009) Non-equilibrium reacting gas flows: kinetic theory of transport and relaxation processes. Springer series heat and mass transfer. Springer, BerlinGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Mario Capitelli
    • 1
  • Domenico Bruno
    • 2
  • Annarita Laricchiuta
    • 2
  1. 1.University of BariBariItaly
  2. 2.IMIP CNRBariItaly

Personalised recommendations