Skip to main content

Transport Cross Sections: Classical and Quantum Approaches

  • Chapter
  • First Online:

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 74))

Abstract

The heart of the Chapman–Enskog theory lies on some assumptions on the nature of elementary collisions, which are postulated to be binary, elastic, characterized by isotropic interparticle force field, and adequately described through classical mechanics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Traditionally the orders (1,1) and (2,2) are defined as diffusion-type and viscosity-type collision integrals, respectively, due to a direct dependence of binary diffusion and viscosity coefficients from the Ω (1, 1) and Ω (2, 2) values, when calculated in the first Chapman–Enskog approximation.

  2. 2.

    Database is available on-line at the National Institute of Standards and Technology (NIST) website http://webbook.nist.gov/chemistry/

References

  • Amdur I (1961) An experimental approach to the determination of gaseous transport properties at very high temperatures. Planet Space Sci 3:228

    Article  ADS  Google Scholar 

  • Amdur I, Mason EA (1958) Properties of gases at very high temperatures. Phys Fluids 1(5):370–383

    Article  MathSciNet  ADS  Google Scholar 

  • Amdur I, Engler MJ, Jordan JE, Mason EA (1975) Short-range He–Xe interaction from molecular-beam scattering. J Chem Phys 63(1):597–597

    Article  ADS  Google Scholar 

  • André P, Bussière W, Rochette D (2007) Transport coefficients of Ag-SiO2 plasmas. Plasma Chem Plasma Process 27(4):381–403

    Article  Google Scholar 

  • Aquilanti V, Cappelletti D, Pirani F (1996) Range and strength of interatomic forces: dispersion and induction contributions to the bonds of dications and of ionic molecules. Chem Phys 209(2–3):299–311

    Article  Google Scholar 

  • Aziz RA, Slaman MJ (1990) The repulsive wall of the Ar–Ar interatomic potential reexamined. J Chem Phys 92(2):1030

    Article  ADS  Google Scholar 

  • Bell KL, Scott NS, Lennon MA (1984) The scattering of low-energy electrons by argon atoms. J Phys B At Mol Phys 17(23):4757

    Article  ADS  Google Scholar 

  • Beneventi L, Casavecchia P, Pirani F, Vecchiocattivi F, Volpi GG, Brocks G, van der Avoird A, Heijmen B, Reuss J (1991) The Ne–O2 potential energy surface from high-resolution diffraction and glory scattering experiments and from the Zeeman spectrum. J Chem Phys 95(1):195–204

    Article  ADS  Google Scholar 

  • Biolsi L, Biolsi KJ (1979) Transport properties of monatomic carbon II: Contributions from excited electronic states. J Geophys Res 84(A9):5311–5318

    Article  ADS  Google Scholar 

  • Biolsi L, Rainwater JC, Holland PM (1982) Transport properties of monatomic carbon. J Chem Phys 77(1):448

    Article  ADS  Google Scholar 

  • Brunetti B, Pirani F, Vecchiocattivi F, Luzzatti E (1978) Absolute total cross sections for elastic scattering of Ne by Ar, Kr and Xe: characterization of long range interactions. Chem Phys Lett 55(3):565

    Article  ADS  Google Scholar 

  • Brunetti B, Liuti G, Luzzatti E, Pirani F, Vecchiocattivi F (1981) Study of the interactions of atomic and molecular oxygen with O2 and N2 by scattering data. J Chem Phys 74:6734

    Article  ADS  Google Scholar 

  • Brunetti B, Liuti G, Luzzatti E, Pirani F, Volpi GG (1983) The interaction of atomic and molecular nitrogen with argon by scattering measurements. J Chem Phys 79(1):273–277

    Article  ADS  Google Scholar 

  • Brunger MJ, Buckman SJ (2002) Electron-molecule scattering cross-sections. I. experimental techniques and data for diatomic molecules. Phys Rep 357(3–5):215–458

    Google Scholar 

  • Bruno D, Catalfamo C, Laricchiuta A, Giordano D, Capitelli M (2006) Convergence of Chapman-Enskog calculation of transport coefficients of magnetized argon plasma. Phys Plasmas 13(7):072307

    Article  ADS  Google Scholar 

  • Cambi R, Cappelletti D, Liuti G, Pirani F (1991) Generalized correlations in terms of polarizability for van der Waals interaction potential parameter calculations. J Chem Phys 95(3):1852–1861

    Article  ADS  Google Scholar 

  • Capitelli M, Ficocelli E (1972) Collision integrals of oxygen atoms in different electronic states. J Phys B At Mol Phys 5(11):2066–2073

    Article  ADS  Google Scholar 

  • Capitelli M, Ficocelli E (1973) Collision integrals of carbon-oxygen atoms in different electronic states. J Phys B At Mol Phys 6:1819–1823

    Article  ADS  Google Scholar 

  • Capitelli M, Lamanna UT, Guidotti C, Arrighini GP (1983) Comment on ‘spin-polarized atomic nitrogen and the 7 Σ u  +  state of N2’. J Chem Phys 79:5210

    Article  ADS  Google Scholar 

  • Cappelletti D, Liuti G, Pirani F (1991) Generalization to ion—neutral systems of the polarizability correlations for interaction potential parameters. Chem Phys Lett 183(3–4):297–303

    Article  ADS  Google Scholar 

  • Capitelli M, Gorse C, Longo S, Giordano D (2000) Collision integrals of high-temperature air species. J Thermophys Heat Transf 14(2):259–268

    Article  Google Scholar 

  • Capitelli M, Cappelletti D, Colonna G, Gorse C, Laricchiuta A, Liuti G, Longo S, Pirani F (2007) On the possibility of using model potentials for collision integral calculations of interest for planetary atmospheres. Chem Phys 338(1):62–68

    Article  ADS  Google Scholar 

  • Capitelli M, Colonna G, D’Angola A (2011) Fundamental aspects of plasma chemical physics: thermodynamics. Springer series on atomic, optical, and plasma physics, vol 66. Springer, New York

    Google Scholar 

  • Colonna G, Laricchiuta A (2008) General numerical algorithm for classical collision integral calculation. Comput Phys Commun 178(11):809–816

    Article  ADS  Google Scholar 

  • D’Angola A, Colonna G, Gorse C, Capitelli M (2008) Thermodynamic and transport properties in equilibrium air plasmas in a wide pressure and temperature range. Eur Phys J D 46(1):129–150

    Article  ADS  Google Scholar 

  • Devoto RS (1967) Transport coefficients of partially ionized argon. Phys Fluids 10(2):354–364

    Article  ADS  Google Scholar 

  • Devoto RS (1968) Transport coefficients of partially ionized hydrogen. J Plasma Phys 2(4):617–631

    Article  ADS  Google Scholar 

  • Geltman S (1969) Topics in atomic collision theory. Academic, New York

    Google Scholar 

  • Gibson JC, Gulley RJ, Sullivan JP, Buckman SJ, Chan V, Burrow PD (1996) Elastic electron scattering from argon at low incident energies. J Phys B At Mol Opt Phys 29(14):3177

    Article  ADS  Google Scholar 

  • Gryzinski M (1970) Ramsauer effect as a result of the dynamic structure of the atomic shell. Phys Rev Lett 24:45–47

    Article  ADS  Google Scholar 

  • Gupta RN, Yos JM, Thompson RA, Lee KP (1990) A review of reaction and thermodynamic properties for 11-species air model for chemical and thermal non-equilibrium calculations to 30 000 K. NASA Report RP-1232

    Google Scholar 

  • Hahn HS, Mason EA, Smith FJ (1971) Quantum transport cross sections in a completely ionized gas. Phys Fluids 14(2):278–287

    Article  ADS  Google Scholar 

  • Heck EL, Dickinson AS (1996) Transport and relaxation cross-sections for pure gases of linear molecules. Comput Phys Commun 95(2–3):190–220

    Article  ADS  Google Scholar 

  • Hirschfelder JO, Eliason MA (1957) The estimation of the transport properties for electronically excited atoms and molecules. Ann New York Acad Sci 67(9):451–461

    Article  ADS  Google Scholar 

  • Hirschfelder JO, Curtiss CF, Bird RB (1966) Molecular theory of gases and liquids. Wiley, New York

    Google Scholar 

  • Itikawa Y (2002) Cross sections for electron collisions with carbon dioxide. J Phys Chem Ref Data 31(3):749–767

    Article  ADS  Google Scholar 

  • Itikawa Y (2006) Cross sections for electron collisions with nitrogen molecules. J Phys Chem Ref Data 35(1):31–53

    Article  ADS  Google Scholar 

  • Itikawa Y (2009) Cross sections for electron collisions with oxygen molecules. J Phys Chem Ref Data 38(1):1–20

    Article  ADS  Google Scholar 

  • Kalinin A, Dubrovitskii D (2000) The possibility of using repulsive interaction potentials for the calculation of high-temperature integrals of collisions between atoms and molecules. High Temp 38(6):848–851. Translated from Teplofizika Vysokikh Temperatur 38(6) (2000) 88–885

    Google Scholar 

  • Kalinin A, Leonas V, Sermyagin A (1976) On the functionality of short-range potentials derived from the beam scattering data. Chem Phys Lett 39(1):191–193

    Article  ADS  Google Scholar 

  • Kihara T, Aono O (1963) Unified theory of relaxations in plasmas I. Basic theorem. J Phys Soc Japan 18(6):837–851

    Article  MathSciNet  ADS  Google Scholar 

  • Kihara T, Taylor MH, Hirschfelder JO (1960) Transport properties for gases assuming inverse power intermolecular potentials. Phys Fluids 3(5):715–720

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Landau DL, Lifshitz EM (1981) Quantum mechanics: non–relativistic theory. Butterworth–Heinemann, Oxford

    Google Scholar 

  • Laricchiuta A, Colonna G, Bruno D, Celiberto R, Gorse C, Pirani F, Capitelli M (2007) Classical transport collision integrals for a Lennard-Jones like phenomenological model potential. Chem Phys Lett 445(4–6):133–139

    Article  ADS  Google Scholar 

  • Laricchiuta A, Bruno D, Capitelli M, Celiberto R, Gorse G, Pintus G (2008) Collision integrals of oxygen atoms and ions in electronically excited states. Chem Phys 344(1–2):13–20

    Article  ADS  Google Scholar 

  • Laricchiuta A, Bruno D, Capitelli M, Catalfamo C, Celiberto R, Colonna G, Diomede P, Giordano D, Gorse C, Longo S, Pagano D, Pirani F (2009) High temperature Mars atmosphere. Part I: Transport cross sections. Eur Phys J D 54(3):607–612

    Google Scholar 

  • Leonas VB (1972) Studies of short-range intermolecular forces. Sov Phys Usp 15(3):266

    Article  ADS  Google Scholar 

  • Leonas V, Sermyagin A, Kamyshov N (1971) The short-range interaction of molecules: the experimental investigation of potential energy surfaces. Chem Phys Lett 8(3):282–284

    Article  ADS  Google Scholar 

  • Levin E, Wright MJ (2004) Collision integrals for ion-neutral interactions of nitrogen and oxygen. J Thermophys Heat Tran 18(1):143–147

    Article  Google Scholar 

  • Levin E, Partridge H, Stallcop J (1990) Collision integrals and high temperature transport properties for N-N, O-O and N-O. J Thermophys Heat Tran 4(4):469–477

    Article  ADS  Google Scholar 

  • Liboff RL (1959) Transport coefficients determined using the shielded Coulomb potential. Phys Fluids 2(1):40–46

    Article  MATH  ADS  Google Scholar 

  • Liuti G, Pirani F (1985) Regularities in van der Waals forces: correlation between the potential parameters and polarizability. Chem Phys Lett 122(3):245–250

    Article  ADS  Google Scholar 

  • Longo S, Capitelli M (1994) A simple approach to treat anisotropic elastic collisions in Monte Carlo calculations of the electron energy distribution function in cold plasmas. Plasma Chem Plasma Process 14:1–13

    Article  Google Scholar 

  • Maclagan RGAR, Viehland LA, Dickinson AS (1999) Ab initio calculation of the gas phase ion mobility of CO +  ions in He. J Phys B At Mol Phys 32(20):4947

    Article  ADS  Google Scholar 

  • Mason EA (1954) Transport properties of gases obeying a modified Buckingham (expäêsix) potential. J Chem Phys 22(2):169

    Article  ADS  Google Scholar 

  • Mason EA (1957) Scattering of low velocity molecular beams in gases. J Chem Phys 26(3):667–677

    Article  ADS  Google Scholar 

  • Mason EA, Munn RJ, Smith FJ (1967) Transport coefficients of ionized gases. Phys Fluids 10(8):1827

    Article  ADS  Google Scholar 

  • Meeks F, Cleland T, Hutchinson K (1967) On the quantum cross sections in dilute gases. J Chem Phys 10(10):2105–2112

    Google Scholar 

  • Monchick L (1959) Collision integrals for the exponential repulsive potential. Phys Fluids 2(6):695–700

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Morgan JE, Schiff HI (1964) Diffusion coefficients of O and N atoms in inert gases. Canad J Chem 42(10):2300

    Article  Google Scholar 

  • Mott N, Massey H (1965) The theory of atomic collisions. Clarendon, Oxford

    Google Scholar 

  • Murphy AB (2000) Transport coefficients of hydrogen and argon–hydrogen plasmas. Plasma Chem Plasma Process 20(3):279–297

    Article  Google Scholar 

  • Nahar SN, Wadehra JM (1987) Elastic scattering of positrons and electrons by argon. Phys Rev A 35:2051–2064

    Article  ADS  Google Scholar 

  • Neufeld PD, Janzen AR, Aziz RA (1972) Empirical equations to calculate 16 of the transport collision integrals Ω (, s) ⋆  for the Lennard-Jones (12–6) potential. J Chem Phys 57(3):1100

    Article  ADS  Google Scholar 

  • O’Hara H, Smith F (1971) Transport collision integrals for a dilute gas. Comput Phys Commun 2(1):47–54

    Article  ADS  Google Scholar 

  • Panajotovic R, Filipovic D, Marinkovic B, Pejcev V, Kurepa M, Vuskovic L (1997) Critical minima in elastic electron scattering by argon. J Phys B At Mol Opt Phys 30(24):5877

    Article  ADS  Google Scholar 

  • Pirani F, Cappelletti D, Liuti G (2001) Range, strength and anisotropy of intermolecular forces in atom–molecule systems: an atom–bond pairwise additivity approach. Chem Phys Lett 350(3–4):286–296

    Article  ADS  Google Scholar 

  • Pirani F, Albertí M, Castro A, Teixidor MM, Cappelletti D (2004) Atom–bond pairwise additive representation for intermolecular potential energy surfaces. Chem Phys Lett 394(1–3):37–44

    Article  ADS  Google Scholar 

  • Pirani F, Maciel GS, Cappelletti D, Aquilanti V (2006) Experimental benchmarks and phenomenology of interatomic forces: open-shell and electronic anisotropy effects. Int Rev Phys Chem 25(1–2):165–199

    Article  Google Scholar 

  • Rainwater J, Holland P, Biolsi L (1982) Binary collision dynamics and numerical evaluation of dilute gas transport properties for potentials with multiple extrema. J Chem Phys 77(1):434–447

    Article  ADS  Google Scholar 

  • Rat V, André P, Aubreton J, Elchinger MF, Fauchais P, Vacher D (2002) Transport coefficients including diffusion in a two-temperature argon plasma. J Phys D Appl Phys 35(10):981–991

    Article  ADS  Google Scholar 

  • Rat V, Murphy AB, Aubreton J, Elchinger MF, Fauchais P (2008) Treatment of non-equilibrium phenomena in thermal plasma flows. J Phys D Appl Phys 41(18):183001

    Article  ADS  Google Scholar 

  • Singh NL, Jain DC (1962) The Rydberg-Klein-Rees method of constructing the true potential energy curves of diatomic molecules. Proc Phys Soc 79(2):274

    Article  ADS  Google Scholar 

  • Smith FJ (1967) High order collision integrals. Final Report on contract NSR 52-112-001 National Aeronautics and Space Administration

    Google Scholar 

  • Smith F, Munn R (1964) Automatic calculation of the transport collision integrals with tables for the Morse potential. J Chem Phys 41(11):3560–3568

    Article  ADS  Google Scholar 

  • Sourd B, Aubreton J, Elchinger MF, Labrot M, Michon U (2006) High temperature transport coefficients in e/C/H/N/O mixtures. J Phys D Appl Phys 39(6):1105–1119

    Article  ADS  Google Scholar 

  • Stallcop JR, Partridge H, Levin E (1991) Resonance charge transfer, transport cross sections, and collision integrals for N + (3P)-N(4S) and O + (4S)-O(3P) interactions. J Chem Phys 95(9):6429–6439

    Article  ADS  Google Scholar 

  • Stallcop JR, Partridge H, Levin E (1992) Collision integrals for the interaction of the ions of nitrogen and oxygen in a plasma at high temperatures and pressures. Phys Fluids B Plasma Phys 4(2):386–391

    Article  Google Scholar 

  • Stallcop JR, Partridge H, Pradhan A, Levin E (2000) Potential energies and collision integrals for interactions of carbon and nitrogen atoms. J Thermophys Heat Tran 14(4):480–488

    Article  Google Scholar 

  • Stallcop JR, Partridge H, Levin E (2001) Effective potential energies and transport cross sections for atom-molecule interactions of nitrogen and oxygen. Phys Rev A 64(4):042722 1–12

    Google Scholar 

  • Tang KT, Toennies JP (2003) The van der Waals potentials between all the rare gas atoms from He to Rn. J Chem Phys 118(11):4976–4983

    Article  ADS  Google Scholar 

  • Vanderslice JT (1962) Modification of the Rydberg-Klein-Rees method for obtaining potential curves for doublet states intermediate between Hund’s cases (a) and (b). J Chem Phys 37(2):384–388

    Article  ADS  Google Scholar 

  • Viehland LA, Dickinson AS, Maclagan RGAR (1996) Transport coefficients for NO +  ions in helium gas: a test of the NO + -He interaction potential. Chem Phys 211(1–3):1–15

    Article  Google Scholar 

  • Wright MJ, Bose D, Palmer GE, Levin E (2005) Recommended collision integrals for transport property computations part 1: air species. AIAA J 43(12):2558–2564

    Article  ADS  Google Scholar 

  • Wright MJ, Hwang HH, Schwenke DW (2007) Recommended collision integrals for transport property computations part 2: Mars and Venus entries. AIAA J 45(1):281–288

    Article  ADS  Google Scholar 

  • Yun K, Mason E (1962) Collision integrals for the transport properties of dissociating air at high temperatures. Phys Fluids 5(4):380–386

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Capitelli, M., Bruno, D., Laricchiuta, A. (2013). Transport Cross Sections: Classical and Quantum Approaches. In: Fundamental Aspects of Plasma Chemical Physics. Springer Series on Atomic, Optical, and Plasma Physics, vol 74. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8172-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8172-1_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8171-4

  • Online ISBN: 978-1-4419-8172-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics