A Role for Integrin-ECM Bonds as Mechanotransducers that Modulate Adult Stem Cell Fate

Chapter

Abstract

Mesenchymal stem cells (MSC), occasionally referred to as “adult stem cells,” are a multipotent cell population derived from bone marrow. MSC are an important cell population from therapeutic and fundamental science perspectives, and thus have been studied extensively. In particular, there has been substantial focus on using biomaterials to control the fate of these cells in the context of tissue regeneration. In this chapter, we review evidence for the role of substrate mechanical properties (and elastic modulus in particular) in regulating MSC fate in 2D and 3D cultures in vitro. Importantly, MSC fate appears to be markedly sensitive to the elasticity of the micro-environment in both cases, but mechanisms proposed for cellular mechanosensitivity that were based on 2D culture – in particular, a focus on morphological change as a means for sensing and responding to substrate mechanics – appear to be insufficient to explain MSC responses to substrate mechanics in 3D culture. Instead, we present recent evidence that molecular-scale changes in the cell-material interface, even absent gross morphology changes in cells, are consistent with cell fate changes in both 2D and 3D cultures. Remarkably, the mechanical interplay between cell traction forces and the material resisting this traction has both quantitative effects on occupancy of integrin adhesion receptors, as well as qualitative effects on which integrins are used for adhesion. The possibility that this is due to catch-bonds forming between integrins and materials is discussed, along with other explanations derived from the recent literature. Finally, an overview of the implications of these results for the fields of mechanotransduction and biomaterials engineering is presented.

Keywords

Integrin Synthetic Extracellular Matrix Mesenchymal Stem Cell Förster Resonance Energy Transfer (FRET) Cell therapy 

References

  1. 1.
    Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell 2002; 110(6): 673–87.CrossRefGoogle Scholar
  2. 2.
    Lodish H, Berk A, Kaiser CA, Krieger M, Scott MP, Bretscher A, Ploegh H, Matsudaira P. Molecular cell biology, 6th ed. New York: WH Freeman; 2007.Google Scholar
  3. 3.
    Damsky CH. Extracellular matrix-integrin interactions in osteoblast function and tissue remodeling. Bone 1999; 25(1): 95–6.CrossRefGoogle Scholar
  4. 4.
    Lutolf MP, Gilbert PM, Blau HM. Designing materials to direct stem-cell fate. Nature 2009; 462(7272): 433–41.Google Scholar
  5. 5.
    Ghajar CM, Bissell MJ. Tumor engineering: the other face of tissue engineering. Tissue Eng. Part A 2010; 16(17): 2153–6.CrossRefGoogle Scholar
  6. 6.
    Yamada KM, Cukierman E. Modeling tissue morphogenesis and cancer in 3D. Cell 2007; 130(4): 601–10.CrossRefGoogle Scholar
  7. 7.
    Passier R, van Laake LW, Mummery CL. Stem-cell based therapy and lessons from the heart. Nature 2008; 453(7193): 322–9.CrossRefGoogle Scholar
  8. 8.
    Huebsch N, Arany PR, Mao AS, Shvartsman D, Ali OA, Bencherif SA, Rivera-Feliciano J, Mooney DJ. Harnessing traction-mediated manipulation of the cell-matrix interface to control stem cell fate. Nat. Mater. 2010; 9(6): 518–26.CrossRefGoogle Scholar
  9. 9.
    Silva EA, Kim ES, Kong HJ, Mooney DJ. Material-based deployment enhances efficacy of endothelial progenitor cells. Proc. Natl. Acad. Sci. U.S.A. 2008; 105(38): 14347–52.CrossRefGoogle Scholar
  10. 10.
    Bruder SP, Fink DJ, Caplan AI. Mesenchymal stem cells in bone development, bone repair and skeletal regeneration therapy. J. Cell. Biochem. 1994; 56: 283–94.CrossRefGoogle Scholar
  11. 11.
    Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J. Cell Physiol. 2007; 213: 341–7.CrossRefGoogle Scholar
  12. 12.
    Wollert KC, Drexler H. Cell therapy for the treatment of coronary heart disease: a critical appraisal. Nat. Rev. Cardiol. 2010; 7: 204–15.CrossRefGoogle Scholar
  13. 13.
    Jaiswal RK et al. Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J. Biol. Chem. 2000; 275: 9645–52.CrossRefGoogle Scholar
  14. 14.
    Klees RF et al. Laminin-5 induces osteogenic gene expression in human mesenchymal stem cells through an ERK-dependent pathway. Mol. Biol. Cell 2005; 16(2): 881–90.CrossRefGoogle Scholar
  15. 15.
    Engler AJ, Sen S, Sweeny HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006; 126: 677–89.CrossRefGoogle Scholar
  16. 16.
    Leckband D, Israelachvili J. Intermolecular forces in biology. Quart. Rev. Biophys. 2001; 34(2): 105–267.CrossRefGoogle Scholar
  17. 17.
    Geiger B, Bershadsky A. Exploring the neighborhood: adhesion-coupled mechanosensors. Cell 2002; 110(2): 139–42.CrossRefGoogle Scholar
  18. 18.
    Pierschbacher MD, Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 1984; 309(5963): 30–3.Google Scholar
  19. 19.
    Ruoslahti E. RGD and other recognition sequences for integrins. Annu. Rev. Cell Dev. Biol. 1996; 12: 697–715.Google Scholar
  20. 20.
    Hern DL, Hubbell JA. Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J. Biomed. Mater. Res. 1998; 32(2): 266–76.CrossRefGoogle Scholar
  21. 21.
    Lin HB, Zhao ZC, Garciaecheverria C, Rich DH, Cooper SL. Synthesis of a novel polyurethane copolymer containing covalently attached RGD peptide. J Biomater. Sci. Polym. Ed. 1992; 3(3): 217–27.CrossRefGoogle Scholar
  22. 22.
    Massia SP, Hubbell JA. Covalent surface immobilization of ARG-GLY-ASP-containing and TYR-ILE-GLY-SER-ARG-containing peptides to obtain well-defined cell-adhesive substrates. Anal. Biochem. 1990; 187(2): 292–301.CrossRefGoogle Scholar
  23. 23.
    Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 1999; 20(1): 45–53.CrossRefGoogle Scholar
  24. 24.
    Stile RA, Healy KE. Thermo-responsive peptide-modified hydrogels for tissue regeneration. Biomacromolecules 2001; 2(1): 185–94.CrossRefGoogle Scholar
  25. 25.
    Massia SP, Hubbell JA. An RGD spacing of 440nm is sufficient for integrin alpha V beta 3-mediated fibroblast spreading and 140nm for focal contact formation and stress fiber formation. J. Cell Sci. 1991; 114(5): 1089–100.Google Scholar
  26. 26.
    Xiao Y, Truskey GA. Effect of receptor-ligand affinity on the strength of endothelial cell adhesion. Biophys. J. 1996; 71(5): 2869–84.CrossRefGoogle Scholar
  27. 27.
    Franceschi RT. The developmental control of osteoblast-specific gene expression: role of specific transcription factors and the extracellular matrix environment. Crit. Rev. Oral Biol. Med. 1999; 10(1): 40–57.CrossRefGoogle Scholar
  28. 28.
    Gronthos S, Simmons PJ, Graves SE, Robey PG. Integrin-mediated interactions between human bone marrow stromal precursor cells and the extracellular matrix. Bone 2001; 28(2): 174–81.CrossRefGoogle Scholar
  29. 29.
    Alsberg E, Anderson KW, Albeiruti A, Rowley JA, Mooney DJ. Engineering growing tissues. Proc. Natl. Acad. Sci. U.S.A. 2002; 99(19): 12025–30.CrossRefGoogle Scholar
  30. 30.
    Burdick JA, Anseth KS. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials 2002; 32(22): 4315–23.CrossRefGoogle Scholar
  31. 31.
    Yang F, Williams CG, Wang DA, Lee H, Manson PN, Elisseeff J. The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. Biomaterials 2005; 26(30): 5991–8.CrossRefGoogle Scholar
  32. 32.
    Gilbert SF. Developmental biology, 5th ed. Sunderland: Sinauer Associates; 1997.Google Scholar
  33. 33.
    Thompson, DW. On growth and form. Cambridge: Cambridge University Press; 1917.Google Scholar
  34. 34.
    Curtis ASG, Lackie JM (eds). Measuring cell adhesion. West Sussex: Wiley; 1991.Google Scholar
  35. 35.
    Folkman J, Moscona A. Role of cell-shape in growth-control. Nature 1978; 273(5661): 345–9.CrossRefGoogle Scholar
  36. 36.
    Schwartz MA, Lechene C, Ingber DE. Insoluble fibronectin activates the Na/H antiporter by clustering and immobilizing integrin α5β1 independent of cell shape. Proc. Natl. Acad. Sci. U.S.A. 1991; 88: 7849–53.CrossRefGoogle Scholar
  37. 37.
    Ingber DE. Fibronectin controls capillary endothelial cell growth by modulating cell shape. Proc. Natl. Acad. Sci. USA 1990; 87: 3579–83.Google Scholar
  38. 38.
    Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton. Science 1993; 260(5111): 1124–7.CrossRefGoogle Scholar
  39. 39.
    Pelham RJ Jr., Wang YL. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. U.S.A. 1997; 94(25): 13661–5.CrossRefGoogle Scholar
  40. 40.
    Peyton SR, Putnam AJ. Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J. Cell Physiol. 2005; 204(1): 198–209.Google Scholar
  41. 41.
    DiMilla PA, Barbee K, Lauffenburger DA. Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys. J. 1991; 60: 15–37.CrossRefGoogle Scholar
  42. 42.
    Palecek SP, Loftus JC, Ginsberg MH, Lauffenburger DA, Horwitz AF. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 1997; 385: 537–40.CrossRefGoogle Scholar
  43. 43.
    Discher DE, Mooney DJ, Zandstra PW. Growth factors, matrices and forces combine to control stem cells. Science 2009; 5935: 1673–7.CrossRefGoogle Scholar
  44. 44.
    Anseth KS, Bowman CN, Brannon-Peppas L. Mechanical properties of hydrogels and their experimental determination. Biomaterials 1996; 17(17): 1647–57.CrossRefGoogle Scholar
  45. 45.
    Kong HJ, Polte TR, Alsberg E, Mooney DJ. FRET measurements of cell-traction forces and nano-scale clustering of adhesion ligands varied by substrate stiffness. Proc. Natl. Acad. Sci. USA 2005; 102(12): 4300-5.CrossRefGoogle Scholar
  46. 46.
    Engler AJ et al. Substrate compliance versus ligand density in cell on gel responses. Biophys. J. 2004; 86: 617–28.CrossRefGoogle Scholar
  47. 47.
    McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 2004; 6: 483–95.CrossRefGoogle Scholar
  48. 48.
    Fischbach C et al. Cancer cell angiogenic capability is regulated by 3-D culture and integrin engagement. Proc. Natl. Acad. Sci. U.S.A. 2009; 106(2): 399–404.CrossRefGoogle Scholar
  49. 49.
    Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell-matrix adhesions to the third dimension. Science 2001; 294(5547): 1708–12.CrossRefGoogle Scholar
  50. 50.
    Aota S, Nomizu M, Yamada KM. The short amino acid sequence Pro-His-Ser-Arg-Asn in human fibronectin enhances cell-adhesive function. J. Biol. Chem. 1994; 269(40): 24756–61.Google Scholar
  51. 51.
    Lee ST et al. Engineering integrin signaling for promoting embryonic stem cell self-renewal in precisely defined niche. Biomaterials 2010; 31(6): 1219–26.CrossRefGoogle Scholar
  52. 52.
    Fischbach C, Chen R, Matsumoto T, Schmelzle T, Brugge JS, Polverini PJ, Mooney DJ. Engineering tumors with 3D scaffolds. Nat. Methods 2007; 4(10): 855–60.CrossRefGoogle Scholar
  53. 53.
    Ghajar CM et al. The effect of matrix density on the regulation of 3-D capillary morphogenesis. Biophys. J. 2008; 94(5): 1930–41.CrossRefGoogle Scholar
  54. 54.
    Zaman MH et al. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc. Natl. Acad. Sci. U.S.A. 2006; 103(29): 10889–94.CrossRefGoogle Scholar
  55. 55.
    Banerjee A et al. The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials 2009; 30: 4695–9.CrossRefGoogle Scholar
  56. 56.
    Saha K et al. Substrate modulus directs neural stem cell behavior. Biophys. J. 2008; 95(9): 4426–38.CrossRefMathSciNetGoogle Scholar
  57. 57.
    Pek YS, Wan ACA, Ying JY. The effect of matrix stiffness on mesenchymal stem cell differentiation in a 3D thioxtropic gel. Biomaterials 2010; 31: 385–91.CrossRefGoogle Scholar
  58. 58.
    Jiang G, Huang AH, Cai Y, Tanase M, Sheetz MP. Rigidity sensing at the leading edge through αVβ3 integrins and RPTPα. Biophys. J. 2006; 90: 1804–9.CrossRefGoogle Scholar
  59. 59.
    Li RH, Altreuter DH, Gentile FT. Transport characterization of hydrogel matrices for cell encapsulation. Biotechnol. Bioeng. 1995; 50: 365–73.CrossRefGoogle Scholar
  60. 60.
    Boontheekul T, Kong HJ, Mooney DJ. Controlling alginate gel degradation utilizing partial oxidation and biomodal molecular weight distribution. Biomaterials 2005; 26: 2455–65.CrossRefGoogle Scholar
  61. 61.
    Peyton SR, Raub CB, Keschramrus VP, Putnam AJ. The use of poly(ethylene glycol) hydrogels to investigate the impact of ECM chemistry and mechanics on smooth muscle cells. Biomaterials 2006; 27: 4881–93.CrossRefGoogle Scholar
  62. 62.
    Johnson CP, Tang HY, Carag C, Speicher DW, Discher DE. Forced unfolding of proteins within cells. Science 2007; 317(5838): 663–6.CrossRefGoogle Scholar
  63. 63.
    Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science 2005; 310: 1139–43.Google Scholar
  64. 64.
    Baneyx G, Baugh L, Vogel V. FN extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension. Proc. Natl. Acad. Sci. USA 2002; 99(8): 5139-43.Google Scholar
  65. 65.
    Chung EH et al. Biomimetic artificial ECMs stimulate bone regeneration. J. Biomed. Mater. Res. A 2006; 79(4): 815–26.Google Scholar
  66. 66.
    Bell GI. Models for the specific adhesion of cells to cells. Science 1978; 200(4342): 618–27.CrossRefGoogle Scholar
  67. 67.
    Kong F, Garcia AJ, Mould AP, Humphries MJ, Zhu C. Demonstration of catch bonds between an integrin and its ligand. J. Cell Biol. 2009; 185(7): 1275–84.CrossRefGoogle Scholar
  68. 68.
    Marshall BT, Long M, Piper JW, Yago T, McEver RP, Zhu C. Direct observation of catch bonds involving cell-adhesion molecules. Nature 2003; 423(6936): 190–3.CrossRefGoogle Scholar
  69. 69.
    Dembo M, Torney DC, Saxman K, Hammer D. The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc. R. Soc. Lond. B Biol. Sci. 1988; 234(1274): 55–83.CrossRefGoogle Scholar
  70. 70.
    Humphries MJ. Cell-substrate adhesion assays. In: Bonifacino JS, Dasso M, Harford JB, Lippincott-Schwartz J, Yamada K (eds) Current Protocols in Cell Biology; 9.1.1–9.1.11. New York: Wiley; 1998.Google Scholar
  71. 71.
    Huebsch N, Mooney DJ. Inspiration and application in the evolution of biomaterials. Nature 2009; 462(7272): 426–32.CrossRefGoogle Scholar
  72. 72.
    Kong HJ, Boontheekul T, Mooney DJ. Quantifying the relation between ligand-recepto bond formation and cell phenotype. Proc. Natl. Acad. Sci. U.S.A. 2006; 103(49): 18534–9.CrossRefGoogle Scholar
  73. 73.
    Lakowicz JT. Principles of fluorescence spectroscopy, 3rd ed. New York: Springer; 2006.CrossRefGoogle Scholar
  74. 74.
    Lakowicz JR. Principles of Fluorescence Spectroscopy, 3rd. Ed. New York: Springer; 2006.Google Scholar
  75. 75.
    Kong HJ, Polte TR, Alsberg E, Mooney DJ. FRET measurements of cell-traction forces and nano-scale clustering of adhesion ligands varied by substrate stiffness. Proc. Natl. Acad. Sci. U.S.A. 2005; 102(12): 4300–5.CrossRefGoogle Scholar
  76. 76.
    Lo CM, Wang HB, Dembo M, Wang YL. Cell movement is guided by the rigidity of the substrate. Biophys. J. 2000; 79: 144–52.CrossRefGoogle Scholar
  77. 77.
    Chigaev A, Buranda T, Dwyer DC, Prossnitz ER, Sklar LA. FRET detection of cellular α4-integrin conformational activation. Biophys. J. 2003; 85: 3951–62.CrossRefGoogle Scholar
  78. 78.
    Askari JA, Tyrian CJ, Webb SED, Martin-Fernandez ML, Ballestrem C, Humphries MJ. Focal adhesions are sites of integrin extension. J. Cell Biol. 2010; 188(6): 891–903.CrossRefGoogle Scholar
  79. 79.
    Paszek MJ, Boettiger D, Weaver VM, Hammer DA. Integrin clustering is driven by mechanical resistance from the glycocalyx and the substrate. PLOS Comp. Biol. 2009; 5(12): e10000604.CrossRefMathSciNetGoogle Scholar
  80. 80.
    Pankov R et al. Integrin dynamics and matrix assembly: tensin-dependent translocation of α5β1 integrins promotes early fibronectin fibrollogenesis. J. Cell Biol. 2000; 148: 1075–90.CrossRefGoogle Scholar
  81. 81.
    Garcia AJ, Vega MD, Boettiger D. Modulation of cell proliferation and differentiation through substrate-dependent changes in FN conformation. Mol. Biol. Cell 1999; 10: 785–98.Google Scholar
  82. 82.
    Keselowsky BG, Garcia AJ. Quantitative methods for analysis of integrin binding and focal adhesion formation on biomaterial surfaces. Biomaterials 2005; 26: 413–8.CrossRefGoogle Scholar
  83. 83.
    Keselowsky BG, Collard DM, Garcia AJ. Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc. Natl. Acad. Sci. U.S.A. 2005; 102(17): 5953–7.CrossRefGoogle Scholar
  84. 84.
    Lan MA, Gersbach CA, Michael KE, Keselowsky BG, Garcia AJ. Myoblast proliferation and differentiation on fibronectin-coated self assembled monolayers presenting different surface chemistries. Biomaterials 2005; 26(22): 4523–31.CrossRefGoogle Scholar
  85. 85.
    Klotzsch E et al. Fibronectin forms the most extensible biological fibers displaying switchable force-exposed cryptic binding sites. Proc. Natl. Acad. Sci. U.S.A. 2009; 106(43): 18267–72.CrossRefGoogle Scholar
  86. 86.
    Galbraith CG, Yamada KM, Sheetz MP. The relationship between force and focal complex development. J. Cell Biol. 2002; 159(4): 695–705.CrossRefGoogle Scholar
  87. 87.
    Brown CM et al. Probing the integrin-actin linkage using high-resolution protein velocity mapping. J. Cell Sci. 2006; 119: 5204–14.CrossRefGoogle Scholar
  88. 88.
    Galbraith CG, Yamada KM, Galbraith JA. Polymerizing actin fibers position integrins primed to probe for adhesion sites. Science 2007; 315(5814): 992–5.CrossRefGoogle Scholar
  89. 89.
    Putnam AJ, Cunningham JJ, Dennis RG, Linderman JJ, Mooney DJ. Microtubule assembly is regulated by externally applied strain in cultured smooth muscle cells. J. Cell Sci. 1998; 111: 3379–87.Google Scholar
  90. 90.
    Ward MD, Dembo M, Hammer DA. Kinetics of cell detachment: peeling of discrete receptor clusters. Biophys. J. 1994; 67(6): 2522–34.CrossRefGoogle Scholar
  91. 91.
    Putnam AJ, Cunningham JJ, Pillemer BBL, Mooney DJ. External mechanical strain regulates membrane targeting of Rho GTPases by controlling microtubule assembly. Am. J. Physiol. Cell Physiol. 2003; 284: C627–39.Google Scholar
  92. 92.
    Zemel A, Rehfeldt F, Brown AEX, Discher DE, Safran SA. Optimal matrix rigidity for stress-fibre polarization in stem cells. Nat. Phys. 2010; 6: 468–73.CrossRefGoogle Scholar
  93. 93.
    Engler AJ et al. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J. Cell Sci. 2008; 121: 3794–802.CrossRefGoogle Scholar
  94. 94.
    Lian JB et al. Species-specific glucocorticoid and 1,25-dihydroxyvitamin D responsiveness in mouse MC3T3-E1 osteoblasts: dexamethasone inhibits osteoblast differentiation and vitamin D down-regulates osteocalcin gene expression. Endocrinology 1997; 138(5): 2117–27.CrossRefMathSciNetGoogle Scholar
  95. 95.
    Gundle R, Stewart K, Screen J, Beresford JN. Isolation and culture of human bone-derived cells. In: Beresford JN, Owen ME (eds) Practical Animal Cell Biology Series: Marrow Stromal Cell Culture. New York: Cambridge University Press; 1998.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonUSA

Personalised recommendations