Skip to main content

Substrate Elasticity as a Probe to Measure Mechanosensing at Cell-Cell and Cell-Matrix Junctions

  • Chapter
  • First Online:

Abstract

In vivo, most cells are mechanically and chemically connected to other cells or to a variety of polymeric networks generically called the extracellular matrix (ECM). Adhesive contacts are formed by distinct classes of transmembrane protein complexes that have specific binding sites for extracellular targets on one side of the membrane and cytoplasmic domains that engage specific elements of the cytoskeleton and signal transduction systems. Engagement of cell-cell or cell-matrix contact both initiates and depends on mechanical signaling from inside and outside the cell, but also depends on the forces generated at the cell-cell or cell-ECM junction. This chapter will summarize some recent studies of mechanotransduction at cell adhesion sites and present examples of the interplay between cell-cell or cell-matrix contacts in fibroblasts, endothelial cells, cardiac myocytes, T lymphocytes and other cell types.

This chapter is part of Section I: Mechanisms of Cell Adhesion and Mechanotransduction

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tenney, RM, Discher, DE (2009) Stem cells, microenvironment mechanics, and growth factor activation. Curr Opin Cell Biol 21:630–5

    Article  Google Scholar 

  2. Vogel, V, Sheetz, MP (2009) Cell fate regulation by coupling mechanical cycles to biochemical signaling pathways. Curr Opin Cell Biol 21:38–46

    Article  Google Scholar 

  3. Mammoto, T, Ingber, DE (2010) Mechanical control of tissue and organ development. Development 137:1407–20

    Article  Google Scholar 

  4. Keese, CR, Giaever, I (1991) Substrate mechanics and cell spreading. Exp Cell Res 195:528–32

    Article  Google Scholar 

  5. Weiss, P, Garber, B (1952) Shape and movement of mesenchyme cells as functions of the physical structure of the medium: contributions to a quantitative morphology. Proc Natl Acad Sci U S A 38:264–80

    Article  Google Scholar 

  6. Opas, M, Dziak, E (1994) bFGF-induced transdifferentiation of RPE to neuronal progenitors is regulated by the mechanical properties of the substratum. Dev Biol 161:440–54

    Article  Google Scholar 

  7. Pelham, RJ, Jr., Wang, Y (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci U S A 94:13661–5

    Article  Google Scholar 

  8. Klein, EA, Yin, L, Kothapalli, D, Castagnino, P, Byfield, FJ, Xu, T, Levental, I, Hawthorne, E, Janmey, PA, Assoian, RK (2009) Cell-cycle control by physiological matrix elasticity and in vivo tissue stiffening. Curr Biol 19:1511–8

    Article  Google Scholar 

  9. Engler, AJ, Sen, S, Sweeney, HL, Discher, DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–89

    Article  Google Scholar 

  10. Georges, P, Janmey, P (2005) Cell type-specific response to growth on soft materials. J Appl Physiol 984:1547–53

    Article  Google Scholar 

  11. Ghibaudo, M, Saez, A, Trichet, L, Xayaphoummine, A, Browaeys, J, Silberzan, P, Buguin, A, Ladoux, B (2008) Traction forces and rigidity sensing regulate cell functions. Soft Matter 4:1836–43

    Article  Google Scholar 

  12. Nemir, S, West, JL (2010) Synthetic materials in the study of cell response to substrate rigidity. Ann Biomed Eng 38:2–20

    Article  Google Scholar 

  13. Evans, ND, Minelli, C, Gentleman, E, LaPointe, V, Patankar, SN, Kallivretaki, M, Chen, X, Roberts, CJ, Stevens, MM (2009) Substrate stiffness affects early differentiation events in embryonic stem cells. Eur Cell Mater 18:1–13; discussion 13–4

    Google Scholar 

  14. Leipzig, ND, Shoichet, MS (2009) The effect of substrate stiffness on adult neural stem cell behavior. Biomaterials 30:6867–78

    Article  Google Scholar 

  15. Li, Z, Dranoff, JA, Chan, EP, Uemura, M, Sevigny, J, Wells, RG (2007) Transforming growth factor-beta and substrate stiffness regulate portal fibroblast activation in culture. Hepatology 46:1246–56

    Article  Google Scholar 

  16. Byfield, FJ, Wen, Q, Levental, I, Nordstrom, K, Arratia, PE, Miller, RT, Janmey, PA (2009) Absence of filamin A prevents cells from responding to stiffness gradients on gels coated with collagen but not fibronectin. Biophys J 96:5095–102

    Article  Google Scholar 

  17. Solon, J, Levental, I, Sengupta, K, Georges, PC, Janmey, PA (2007) Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys J 93:4453–61

    Article  Google Scholar 

  18. Engler, AJ, Griffin, MA, Sen, S, Bonnemann, CG, Sweeney, HL, Discher, DE (2004) Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol 166:877–87

    Article  Google Scholar 

  19. Bhana, B, Iyer, RK, Chen, WL, Zhao, R, Sider, KL, Likhitpanichkul, M, Simmons, CA, Radisic, M (2010) Influence of substrate stiffness on the phenotype of heart cells. Biotechnol Bioeng 105:1148–60

    Google Scholar 

  20. Chopra, A, Tabdanov, E, Botta, GP, Kresh, JY, Janmey, P (2009) N-cadherin mediated mechanosensitivity and its role in myocyte cytoskeleton remodeling. Circulation 120:S775

    Google Scholar 

  21. Engler, AJ, Carag-Krieger, C, Johnson, CP, Raab, M, Tang, HY, Speicher, DW, Sanger, JW, Sanger, JM, Discher, DE (2008) Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci 121:3794–802

    Article  Google Scholar 

  22. Jacot, JG, McCulloch, AD, Omens, JH (2008) Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophys J 95:3479–87

    Article  Google Scholar 

  23. Stroka, KM, Aranda-Espinoza, H (2009) Neutrophils display biphasic relationship between migration and substrate stiffness. Cell Motil Cytoskeleton 66:328–41

    Article  Google Scholar 

  24. Isenberg, BC, Dimilla, PA, Walker, M, Kim, S, Wong, JY (2009) Vascular smooth muscle cell durotaxis depends on substrate stiffness gradient strength. Biophys J 97:1313–22

    Article  Google Scholar 

  25. Lo, CM, Wang, HB, Dembo, M, Wang, YL (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79:144–52

    Article  Google Scholar 

  26. Nemir, S, Hayenga, HN, West, JL (2010) PEGDA hydrogels with patterned elasticity: novel tools for the study of cell response to substrate rigidity. Biotechnol Bioeng 105:636–44

    Article  Google Scholar 

  27. Georges, PC, Miller, WJ, Meaney, DF, Sawyer, ES, Janmey, PA (2006) Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures. Biophys J 90:3012–8

    Article  Google Scholar 

  28. Ju, YE, Janmey, PA, McCormick, ME, Sawyer, ES, Flanagan, LA (2007) Enhanced neurite growth from mammalian neurons in three-dimensional salmon fibrin gels. Biomaterials 28:2097–108

    Article  Google Scholar 

  29. Byfield, FJ, Reen, RK, Shentu, TP, Levitan, I, Gooch, KJ (2009) Endothelial actin and cell stiffness is modulated by substrate stiffness in 2D and 3D. J Biomech 42:1114–9

    Article  Google Scholar 

  30. Winer, JP, Oake, S, Janmey, PA (2009) Non-linear elasticity of extracellular matrices enables contractile cells to communicate local position and orientation. PLoS One 4:e6382

    Article  Google Scholar 

  31. Beningo, KA, Dembo, M, Wang, YL (2004) Responses of fibroblasts to anchorage of dorsal extracellular matrix receptors. Proc Natl Acad Sci U S A 101:18024–9

    Article  Google Scholar 

  32. Beningo, KA, Wang, YL (2007) Double-hydrogel substrate as a model system for three-dimensional cell culture. Methods Mol Biol 370:203–12

    Article  Google Scholar 

  33. Breuls, RG, Klumpers, DD, Everts, V, Smit, TH (2009) Collagen type v modulates fibroblast behavior dependent on substrate stiffness. Biochem Biophys Res Commun 380:425–9

    Article  Google Scholar 

  34. Kasza, KE, Nakamura, F, Hu, S, Kollmannsberger, P, Bonakdar, N, Fabry, B, Stossel, TP, Wang, N, Weitz, DA (2009) Filamin A is essential for active cell stiffening but not passive stiffening under external force. Biophys J 96:4326–35

    Article  Google Scholar 

  35. Lee, MH, Adams, CS, Boettiger, D, Degrado, WF, Shapiro, IM, Composto, RJ, Ducheyne, P (2007) Adhesion of MC3T3-E1 cells to RGD peptides of different flanking residues: detachment strength and correlation with long-term cellular function. J Biomed Mater Res A 81:150–60

    Google Scholar 

  36. Gallant, ND, Capadona, JR, Frazier, AB, Collard, DM, Garcia, AJ (2002) Micropatterned surfaces to engineer focal adhesions for analysis of cell adhesion strengthening. Langmuir 18:5579

    Article  Google Scholar 

  37. Takai, E, Landesberg, R, Katz, RW, Hung, CT, Guo, XE (2006) Substrate modulation of osteoblast adhesion strength, focal adhesion kinase activation, and responsiveness to mechanical stimuli. Mol Cell Biomech 3:1–12

    Google Scholar 

  38. Sun, Z, Martinez-Lemus, LA, Trache, A, Trzeciakowski, JP, Davis, GE, Pohl, U, Meininger, GA (2005) Mechanical properties of the interaction between fibronectin and α5β1-integrin on vascular smooth muscle cells studied using atomic force microscopy. Am J Physiol Heart Circ Physiol 289:H2526–35

    Article  Google Scholar 

  39. Taubenberger, A, Cisneros, DA, Friedrichs, J, Puech, P-H, Muller, DJ, Franz, CM (2007) Revealing early steps of {alpha}2beta1 integrin-mediated adhesion to collagen type I by using single-cell force spectroscopy. Mol Biol Cell 18:1634–44

    Article  Google Scholar 

  40. Staunton, DE, Marlin, SD, Stratowa, C, Dustin, ML, Springer, TA (1988) Primary structure of ICAM-1 demonstrates interaction between members of the immunoglobulin and integrin supergene families. Cell 52:925–33

    Article  Google Scholar 

  41. Duguay, D, Foty, RA, Steinberg, MS (2003) Cadherin-mediated cell adhesion and tissue segregation: qualitative and quantitative determinants. Dev Biol 253:309–23

    Article  Google Scholar 

  42. Ryan, PL, Foty, RA, Kohn, J, Steinberg, MS (2001) Tissue spreading on implantable substrates is a competitive outcome of cell-cell vs. cell-substratum adhesivity. Proc Natl Acad Sci U S A 98:4323

    Article  Google Scholar 

  43. Pittet, P, Lee, K, Kulik, AJ, Meister, JJ, Hinz, B (2008) Fibrogenic fibroblasts increase intercellular adhesion strength by reinforcing individual OB-cadherin bonds. J Cell Sci 121:877–86

    Article  Google Scholar 

  44. Wang, N, Tytell, JD, Ingber, DE (2009) Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol 10:75–82

    Article  Google Scholar 

  45. Liu, Z, Tan, JL, Cohen, DM, Yang, MT, Sniadecki, NJ, Ruiz, SA, Nelson, CM, Chen, CS (2010) Mechanical tugging force regulates the size of cell-cell junctions. Proc Natl Acad Sci U S A 107:9944–9

    Article  Google Scholar 

  46. Siechen, S, Yang, S, Chiba, A, Saif, T (2009) Mechanical tension contributes to clustering of neurotransmitter vesicles at presynaptic terminals. Proc Natl Acad Sci U S A 106:12611–6

    Article  Google Scholar 

  47. Kim, ST, Takeuchi, K, Sun, ZY, Touma, M, Castro, CE, Fahmy, A, Lang, MJ, Wagner, G, Reinherz, EL (2009) The alphabeta T cell receptor is an anisotropic mechanosensor. J Biol Chem 284:31028–37

    Article  Google Scholar 

  48. Ma, Z, Finkel, TH (2010) T cell receptor triggering by force. Trends Immunol 31:1–6

    Article  Google Scholar 

  49. Ganz, A, Lambert, M, Saez, A, Silberzan, P, Buguin, A, Mege, RM, Ladoux, B (2006) Traction forces exerted through N-cadherin contacts. Biol Cell 98:721–30

    Article  Google Scholar 

  50. Ladoux, B, Anon, E, Lambert, M, Rabodzey, A, Hersen, P, Buguin, A, Silberzan, P, Mege, RM (2010) Strength dependence of cadherin-mediated adhesions. Biophys J 98:534–42

    Article  Google Scholar 

  51. Potard, US, Butler, JP, Wang, N (1997) Cytoskeletal mechanics in confluent epithelial cells probed through integrins and E-cadherins. Am J Physiol 272:C1654–63

    Google Scholar 

  52. Janmey, PA, McCulloch, CA (2007) Cell mechanics: integrating cell responses to mechanical stimuli. Annu Rev Biomed Eng 9:1–34

    Article  Google Scholar 

  53. Yeung, T, Georges, PC, Flanagan, LA, Marg, B, Ortiz, M, Funaki, M, Zahir, N, Ming, W, Weaver, V, Janmey, PA (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton 60:24–34

    Article  Google Scholar 

  54. Martinez-Rico, C, Pincet, F, Thiery, JP, Dufour, S (2010) Integrins stimulate E-cadherin-mediated intercellular adhesion by regulating Src-kinase activation and actomyosin contractility. J Cell Sci 123:712–22

    Article  Google Scholar 

  55. du Roure, O, Saez, A, Buguin, A, Austin, RH, Chavrier, P, Silberzan, P, Ladoux, B (2005) Force mapping in epithelial cell migration. Proc Natl Acad Sci U S A 102:2390–5

    Article  Google Scholar 

  56. Dzamba, BJ, Jakab, KR, Marsden, M, Schwartz, MA, DeSimone, DW (2009) Cadherin adhesion, tissue tension, and noncanonical Wnt signaling regulate fibronectin matrix organization. Dev Cell 16:421–32

    Article  Google Scholar 

  57. Borghi, N, Lowndes, M, Maruthamuthu, V, Gardel, ML, Nelson, WJ (2010) Regulation of cell motile behavior by crosstalk between cadherin- and integrin-mediated adhesions. Proc Natl Acad Sci U S A 107:13324–9

    Article  Google Scholar 

  58. Trepat, X, Wasserman, MR, Angelini, TE, Millet, E, Weitz, DA, Butler, JP, Fredberg, JJ (2009) Physical forces during collective cell migration. Nat Phys 5:426–30

    Article  Google Scholar 

  59. Angelini, TE, Hannezo, E, Trepat, X, Fredberg, JJ, Weitz, DA (2010) Cell migration driven by cooperative substrate deformation patterns. Phys Rev Lett 104:168104

    Article  Google Scholar 

  60. Friedl, P, Gilmour, D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10:445–57

    Article  Google Scholar 

  61. Califano, JP, Reinhart-King, CA (2009) The effects of substrate elasticity on endothelial cell network formation and traction force generation. Conf Proc IEEE Eng Med Biol Soc 2009:3343–5

    Google Scholar 

  62. Califano, JP, Reinhart-King, CA (2010) Exogenous and endogenous force regulation of endothelial cell behavior. J Biomech 43:79–86

    Article  Google Scholar 

  63. Guo, WH, Frey, MT, Burnham, NA, Wang, YL (2006) Substrate rigidity regulates the formation and maintenance of tissues. Biophys J 90:2213–20

    Article  Google Scholar 

  64. Sander, EE, van Delft, S, ten Klooster, JP, Reid, T, van der Kammen, RA, Michiels, F, Collard, JG (1998) Matrix-dependent Tiam1/Rac signaling in epithelial cells promotes either cell-cell adhesion or cell migration and is regulated by phosphatidylinositol 3-kinase. J Cell Biol 143:1385–98

    Article  Google Scholar 

  65. Kandow, CE, Georges, PC, Janmey, PA, Beningo, KA (2007) Polyacrylamide hydrogels for cell mechanics: steps toward optimization and alternative uses. Methods Cell Biol 83:29–46

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Janmey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Winer, J.P., Chopra, A., Kresh, J.Y., Janmey, P.A. (2011). Substrate Elasticity as a Probe to Measure Mechanosensing at Cell-Cell and Cell-Matrix Junctions. In: Wagoner Johnson, A., Harley, B. (eds) Mechanobiology of Cell-Cell and Cell-Matrix Interactions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8083-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8083-0_2

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-8082-3

  • Online ISBN: 978-1-4419-8083-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics