Skip to main content

Optical Sensing of Red Blood Cell Dynamics

  • Chapter
  • First Online:
Mechanobiology of Cell-Cell and Cell-Matrix Interactions

Abstract

Human red blood cell membrane (RBC) has remarkable deformability, which is crucial for its oxygen transportation in the blood circulatory system. This deformability of the RBC membrane can be altered by several patho-physiological conditions. Here we present recent development of optical imaging techniques to measure dynamic fluctuations in the RBC membrane, from which RBC membrane mechanical properties are probed non-invasively.

This chapter is part of Section IV: Tools for Exploring Mechanobiology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mohandas N and Gallagher P G (2008) Red cell membrane: past, present, and future. Blood 112:3939–3948

    Article  Google Scholar 

  2. Cotran R, Kumar V, Collins T et al (2004) Robbins pathologic basis of disease. Philadelphia: WB Saunders

    Google Scholar 

  3. Bao G and Suresh S (2003) Cell and molecular mechanics of biological materials. Nature Mat 2:715–725

    Article  Google Scholar 

  4. Fournier J B, Lacoste D, and Rapha E (2004) Fluctuation spectrum of fluid membranes coupled to an elastic meshwork: jump of the effective surface tension at the mesh size. Phys Rev Lett 92:18102

    Article  Google Scholar 

  5. Discher D E, Mohandas N, and Evans E A (1994) Molecular maps of red cell deformation: hidden elasticity and in situ connectivity. Science 266:1032–1035

    Article  Google Scholar 

  6. Engelhardt H, Gaub H, and Sackmann E (1984) Viscoelastic properties of erythrocyte membranes in high-frequency electric fields. Nature 307:378–380

    Article  Google Scholar 

  7. Puig-de-Morales-Marinkovic M, Turner K T, Butler J P et al (2007) Viscoelasticity of the human red blood cell. Am J Physiol Cell Physiol 293:597–605

    Article  Google Scholar 

  8. Browicz T (1890) Further observation of motion phenomena on red blood cells in pathological states. Zbl med Wissen 28: 625–627

    Google Scholar 

  9. Gov N, Zilman A G, and Safran S (2003) Cytoskeleton confinement and tension of red blood cell membranes. Phys Rev Lett 90:228101

    Article  Google Scholar 

  10. Zilker A, Ziegler M, and Sackmann E (1992) Spectral-analysis of erythrocyte flickering in the 0.3-4-mu-m-1 regime by microinterferometry combined with fast image-processing. Phys Rev A 46:7998–8002

    Article  Google Scholar 

  11. Popescu G, Ikeda T, Dasari R R et al (2006) Diffraction phase microscopy for quantifying cell structure and dynamics. Opt Lett 31:775–777

    Article  Google Scholar 

  12. Tuvia S, Levin S, Bitler A et al (1998) Mechanical fluctuations of the membrane-skeleton are dependent on F-Actin ATPase in human erythrocytes. Proc Natl Acad Sci USA 141:1551–1561

    Google Scholar 

  13. Gov N S and Safran S A (2005) Red blood cell membrane fluctuations and shape controlled by ATP-induced cytoskeletal defects. Biophys J 88:1859

    Article  Google Scholar 

  14. Lawrence C L L, Gov N, and Brown F L H (2006) Nonequilibrium membrane fluctuations driven by active proteins. J Chem Phys 124:074903

    Article  Google Scholar 

  15. Tuvia S, Levin S, Bitler A et al (1998) Mechanical fluctuations of the membrane-skeleton are dependent on F-actin ATPase in human erythrocytes. J Cell Biol 141:1551–1561

    Article  Google Scholar 

  16. Li J, Dao M, Lim C T et al (2005) Spectrin-level moddquo;eling of the cytoskeleton and optical tweezers stretching of the erythrocyte. Biophys J 88:3707–3719

    Article  Google Scholar 

  17. Brochard F and Lennon J F (1975) Frequency spectrum of the flicker phenomenon in erythrocytes. J Phys 36:1035–1047

    Google Scholar 

  18. Kaizuka Y and Groves J T (2006) Hydrodynamic damping of membrane thermal fluctuations near surfaces imaged by fluorescence interference microscopy. Phys Rev Lett 96:118101

    Article  Google Scholar 

  19. Zilker A, Engelhardt H, and Sackmann E (1987) Dynamic reflection interference contrast (Ric-) microscopy – a new method to study surface excitations of cells and to measure membrane bending elastic-moduli. J Phys 48:2139–2151

    Google Scholar 

  20. Zernike F (1942) Phase contrast, a new method for the microscopic observation of transparent objects part II. Physica 9:974–986

    Article  Google Scholar 

  21. Zidovska A and Sackmann E (2006) Brownian motion of nucleated cell envelopes impedes adhesion. Phys Rev Lett 96:048103

    Article  Google Scholar 

  22. Popescu G (2008) Quantitative phase imaging of nanoscale cell structure and dynamics. In: B. P. Jena, ed., Methods in Cell Biology. San Diego: Elsevier

    Google Scholar 

  23. Yang C, Wax A, Hahn M S et al (2001) Phase-referenced interferometer with subwavelength and subhertz sensitivity application to the study of cell membrane dynamics. Opt Lett 26:1271–1273

    Article  Google Scholar 

  24. Yang C H, Wax A, Georgakoudi I et al (2000) Interferometric phase-dispersion microscopy. Opt Lett 25:1526–1528

    Article  Google Scholar 

  25. Choma M A, Ellerbee A K, Yang C H et al (2005) Spectral-domain phase microscopy. Opt Lett 30:1162–1164

    Article  Google Scholar 

  26. Joo C, Akkin T, Cense B et al (2005) Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging. Opt Lett 30:2131–2133

    Article  Google Scholar 

  27. Fang-Yen C, Chu M C, Seung H S et al (2004) Noncontact measurement of nerve displacement during action potential with a dual-beam low-coherence interferometer. Opt Lett 29:2028–2030

    Article  Google Scholar 

  28. Akkin T, Dave D P, Milner T E et al (2004) Detection of neural activity using phase-sensitive optical low-coherence reflectometry. Opt Express 12:2377–2386

    Article  Google Scholar 

  29. Rylander C G, Dave D P, Akkin T et al (2004) Quantitative phase-contrast imaging of cells with phase-sensitive optical coherence microscopy. Opt Lett 29:1509–1511

    Article  Google Scholar 

  30. Zicha D and Dunn G A (1995) An image-processing system for cell behavior studies in subconfluent cultures. J Microsc 179:11–21

    Google Scholar 

  31. Dunn G A, Zicha D, and Fraylich P E (1997) Rapid, microtubule-dependent fluctuations of the cell margin. J Cell Sci 110:3091–3098

    Google Scholar 

  32. Zicha D, Genot E, Dunn G A et al (1999) TGF beta 1 induces a cell-cycle-dependent increase in motility of epithelial cells. J Cell Sci 112:447–454

    Google Scholar 

  33. Paganin D and Nugent K A (1998) Noninterferometric phase imaging with partially coherent light. Phys Rev Lett 80:2586–2589

    Article  Google Scholar 

  34. Allman B E, McMahon P J, Tiller J B et al (2000) Noninterferometric quantitative phase imaging with soft x rays. J Opt Soc Am A Opt Image Sci Vis 17:1732–1743

    Article  Google Scholar 

  35. Bajt S, Barty A, Nugent K A et al (2000) Quantitative phase-sensitive imaging in a transmission electron microscope. Ultramicroscopy 83:67–73

    Article  Google Scholar 

  36. Mann C J, Yu L F, Lo C M et al (2005) High-resolution quantitative phase-contrast microscopy by digital holography. Opt Express 13:8693–8698

    Article  Google Scholar 

  37. Marquet P, Rappaz B, Magistretti P J et al (2005) Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt Lett 30:468–470

    Article  Google Scholar 

  38. Iwai H, Fang-Yen C, Popescu G et al (2004) Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry. Opt Lett 29:2399–2401

    Article  Google Scholar 

  39. Popescu G, Deflores L P, Vaughan J C et al (2004) Fourier phase microscopy for investigation of biological structures and dynamics. Opt Lett 29:2503–2505

    Article  Google Scholar 

  40. Ikeda T, Popescu G, Dasari R R et al (2005) Hilbert phase microscopy for investigating fast dynamics in transparent systems. Opt Lett 30:1165–1168

    Article  Google Scholar 

  41. Popescu G, Ikeda T, Best C A et al (2005) Erythrocyte structure and dynamics quantified by Hilbert phase microscopy. J Biomed Opt Lett 10:060503

    Article  Google Scholar 

  42. Huang D, Swanson E A, Lin C P et al (1991) Optical coherence tomography. Science 254:1178–1181

    Article  Google Scholar 

  43. deBoer J F, Milner T E, vanGemert M J C et al (1997) Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt Lett 22:934–936

    Article  Google Scholar 

  44. Hitzenberger C K and Fercher A F (1999) Differential phase contrast in optical coherence tomography. Gastrointest Endosc 24:622–624

    Google Scholar 

  45. Park J, Kemp N J, Milner T E et al (2003) Analysis of the phase retardation in the retinal nerve fiber layer of cynomolus monkey by polarization sensitive optical coherence tomography. Lasers Surg Med 55:55

    Google Scholar 

  46. Choma M A, Yang C H, and Izatt J A (2003) Instantaneous quadrature low-coherence interferometry with 3 x 3 fiber-optic couplers. Opt Lett 28:2162–2164

    Article  Google Scholar 

  47. Youn J I, Akkin T, Wong B J F et al (2003) Electrokinetic measurements of cartilage measurements of cartilage using differential phase optical coherence tomography. Lasers Surg Med 56:56

    Google Scholar 

  48. Kim J, Telenkov S A, and Milner T E (2004) Measurement of thermo-refractive and thermo-elastic changes in a tissue phantom using differential phase optical coherence tomography. Lasers Surg Med 8:8

    Google Scholar 

  49. Wojtkowski M (2010) High-speed optical coherence tomography: basics and applications. Appl Opt 49:30–61

    Article  Google Scholar 

  50. Dunn G and Zicha D (1998) Using the DRIMAPS system of interference microscopy to study cell behavior. In Cell biology: a laboratory handbook 44–53 J. Celis, Ed., Academic press

    Google Scholar 

  51. Dunn G A and Zicha D (1995) Dynamics of fibroblast spreading. J Cell Sci 108:1239–1249

    Google Scholar 

  52. Gureyev T E, Roberts A, and Nugent K A (1995) Phase retrieval with the transport-of-intensity equation – matrix solution with use of Zernike polynomials. J Opt Soc Am A Opt Image Sci Vis 12:1932–1941

    Article  MathSciNet  Google Scholar 

  53. Gureyev T E, Roberts A, and Nugent K A (1995) Partially coherent fields, the transport-of-intensity equation, and phase uniqueness. J Opt Soc Am A Opt Image Sci Vis 12:1942–1946

    Article  MathSciNet  Google Scholar 

  54. Goodman J W and Lawrence R W (1967) Digital image formation from electronically detected holograms. Appl Phys Lett 11:77

    Article  Google Scholar 

  55. Gabor D (1948) A new microscopic principle. Nature 161:777

    Article  Google Scholar 

  56. Goodman J (2005) Introduction to Fourier optics. Englewood Cliffs: Roberts & Company

    Google Scholar 

  57. Yamaguchi I and Zhang T (1997) Phase-shifting digital holography. Opt Lett 22:1268–1270

    Article  Google Scholar 

  58. Carl D, Kemper B, Wernicke G et al (2004) Parameter-optimized digital holographic microscope for high-resolution living-cell analysis. Appl Opt 43:6536–6544

    Article  Google Scholar 

  59. Lue N, Choi W, Popescu G et al (2007) Quantitative phase imaging of live cells using fast Fourier phase microscopy. Appl Opt 46:1836

    Article  Google Scholar 

  60. Park Y K, Popescu G, Badizadegan K et al (2006) Diffraction phase and fluorescence microscopy. Opt Exp 14:8263

    Article  Google Scholar 

  61. Park Y K, Popescu G, Badizadegan K et al (2006) Diffraction phase and fluorescence microscopy. Opt Express 14:8263–8268

    Article  Google Scholar 

  62. Takeda M, Ina H, and Kobayashi S (1982) Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J Opt Soc Am 72:156–160

    Article  Google Scholar 

  63. Park Y K, Diez-Silva M, Popescu G et al (2008) Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum. Proc Natl Acad Sci U S A 105:13730

    Article  Google Scholar 

  64. Park Y, Yamauchi Y, Choi W, Dasari R and Feld M (2009) Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells. Optics Letters 34: 3668–3670

    Google Scholar 

  65. Angelova M I, Soleau S, Meleard P et al (1992) Preparation of giant vesicles by external AC electric fields. Kinetics and applications. Prog Colloid Polym Sci 89:122

    Article  Google Scholar 

  66. Popescu G, Ikeda T, Goda K et al (2006) Optical measurement of cell membrane tension. Phys Rev Lett 97:218101

    Article  Google Scholar 

  67. Evans E and Rawicz W (1990) Entropy-driven tension and bending elasticity in condensed-fluid membranes. Phys Rev Lett 64:2094–2097

    Article  Google Scholar 

  68. Best C A, Cluette-Brown J E, Teruya M et al (2003) Red blood cell fatty acid ethyl esters: a significant component of fatty acid ethyl esters in the blood. J Lipid Res 44:612–620

    Article  Google Scholar 

  69. Lim H W G, Wortis M, and Mukhopadhyay R (2002) Stomatocyte-discocyte-echinocyte sequence of the human red blood cell: evidence for the bilayer-couple hypothesis from membrane mechanics. Proc Natl Acad Sci U S A 99:16766–16769

    Article  Google Scholar 

  70. Gov N, Zilman A, and Safran S (2003) Cytoskeleton confinement of red blood cell membrane fluctuations. Biophys J 84:486A

    Google Scholar 

  71. Discher D E, Boal D H, and Boey S K (1998) Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration. Biophys J 75:1584–1597

    Article  Google Scholar 

  72. Park Y, Best C, Badizadegan K et al (2010) Measurement of red blood cell mechanics during morphological changes. Proc Natl Acad Sci U S A 107:6731

    Article  Google Scholar 

  73. Kuriabova T and Levine A J (2008) Nanorheology of viscoelastic shells: applications to viral capsids. Phys Rev E 77:031921

    Article  MathSciNet  Google Scholar 

  74. Chaikin P M and Lubensky T C (1995) Principles of condensed matter physics. Cambridge: Cambridge University Press

    Google Scholar 

  75. Kuriabova T and Levine A (2008) Nanorheology of viscoelastic shells: applications to viral capsids. Phys Rev E 77:31921

    Article  MathSciNet  Google Scholar 

  76. Waugh R and Evans E A (1979) Thermoelasticity of red blood cell membrane. Biophys J 26:115–131

    Article  Google Scholar 

  77. Dao M, Lim C T, and Suresh S (2003) Mechanics of the human red blood cell deformed by optical tweezers. J Mech Phys Solids 51:2259–2280

    Article  Google Scholar 

  78. Tang W and Thorpe M F (1988) Percolation of elastic networks under tension. Phys Rev B 37:5539

    Article  Google Scholar 

  79. Bursac P, Lenormand G, Fabry B et al (2005) Cytoskeletal remodelling and slow dynamics in the living cell. Nat Mater 4:557–561

    Article  Google Scholar 

  80. Siegel D (1985) Partial purification and characterization of an actin-bundling protein, band 4.9, from human erythrocytes. J Cell Biol 100:775–785

    Article  Google Scholar 

  81. Marko J F and Siggia E D (1995) Stretching DNA. Macromolecules 28:8759–8770

    Article  Google Scholar 

  82. Park Y, Best C, Kuriabova T, Henle M L, Feld M S, Levine A J and Popescu G, Measurement of the nonlinear elasticity of red blood cell membrane. Phys Rev Lett (under review)

    Google Scholar 

  83. Popescu G, Park Y, Lue N et al (2008) Optical imaging of cell mass and growth dynamics. Am J Physiol Cell Physiol 295:C538

    Article  Google Scholar 

  84. Evans E and Fung Y C (1972) Improved measurements of the erythrocyte geometry. Microvasc Res 4:335–347

    Article  Google Scholar 

  85. Savitz D, Sidel V W, and Solomon A K (1964) Osmotic Properties of human red cells. J Gen Physiol 48:79–94

    Article  Google Scholar 

  86. Friebel M and Meinke M (2006) Model function to calculate the refractive index of native hemoglobin in the wavelength range of 250–1100 nm dependent on concentration. Appl Opt 45:2838–2842

    Article  Google Scholar 

  87. Schmid-SchoNbein H, Wells R O E, and Goldstone J (1969) Influence of deformability of human red cells upon blood viscosity. Circ Res 25:131–143

    Google Scholar 

  88. Mohandas N, Clark M R, Jacobs M S et al (1980) Analysis of factors regulating erythrocyte deformability. J Clin Invest 66:563

    Article  Google Scholar 

  89. Wells R and Schmid-Schonbein H (1969) Red cell deformation and fluidity of concentrated cell suspensions. J Appl Physiol 27:213–217

    Google Scholar 

  90. Kilejian A (1979) Characterization of a protein correlated with the production of knob-like protrusions on membranes of erythrocytes infected with Plasmodium falciparum. Proc Natl Acad Sci U S A 76:4650–4653

    Article  Google Scholar 

  91. Sherman I W (1979) Biochemistry of Plasmodium (malarial parasites). Microbiol Rev 43:453

    MathSciNet  Google Scholar 

  92. Goldberg D E, Slater A F G, Cerami A et al (1990) Hemoglobin degradation in the malaria parasite Plasmodium falciparum: an ordered process in a unique organelle. Proc Natl Acad Sci U S A 87:2931–2935

    Article  Google Scholar 

  93. Nash G B, O’Brien E, Gordon-Smith E C et al (1989) Abnormalities in the mechanical properties of red blood cells caused by Plasmodium falciparum. Blood 74:855–861

    Google Scholar 

  94. Cranston H A, Boylan C W, Carroll G L et al (1984) Plasmodium falciparum maturation abolishes physiologic red cell deformability. Science 223:400–403

    Article  Google Scholar 

  95. Paulitschke M and Nash G B (1993) Membrane rigidity of red blood cells parasitized by different strains of Plasmodium falciparum. J Lab Clin Med 122:581–589

    Google Scholar 

  96. Miller L H, Baruch D I, Marsh K et al (2002) The pathogenic basis of malaria. Nature 415:673–679

    Article  Google Scholar 

  97. Suresh S, Spatz J, Mills J P et al (2005) Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater 1:15–30

    Article  Google Scholar 

  98. Mills J P, Diez-Silva M, Quinn D J et al (2007) Effect of plasmodial RESA protein on deformability of human red blood cells harboring Plasmodium falciparum. Proc Natl Acad Sci U S A 104:9213–9217

    Article  Google Scholar 

  99. Glenister F K, Coppel R L, Cowman A F et al (2002) Contribution of parasite proteins to altered mechanical properties of malaria-infected red blood cells. Blood 99:1060–1063

    Article  Google Scholar 

  100. Pei X, Guo X, Coppel R et al (2007) The ring-infected erythrocyte surface antigen (RESA) of plasmodium falciparum stabilizes spectrin tetramers and suppresses further invasion. Blood 110:1036–1042

    Article  Google Scholar 

  101. Lee J C M and Discher D E (2001) Deformation-enhanced fluctuations in the red cell skeleton with theoretical relations to elasticity, connectivity, and spectrin unfolding. Biophys J 81:3178–3192

    Article  Google Scholar 

  102. Parpart A and Hoffman J (1956) Flicker in erythrocytes. Vibratory movements in the cytoplasm? J Cell Comp Physiol 47:295–303

    Article  Google Scholar 

  103. Evans J, Gratzer W, Mohandas N et al (2008) Fluctuations of the red blood cell membrane: relation to mechanical properties and lack of ATP dependence. Biophys J 94:4134

    Article  Google Scholar 

  104. Szekely D, Yau T, and Kuchel P (2009) Human erythrocyte flickering: temperature, ATP concentration, water transport, and cell aging, plus a computer simulation. Eur Biophys J 38:923–939

    Article  Google Scholar 

  105. Gov N S (2007) Active elastic network: cytoskeleton of the red blood cell. Phys Rev E 75:11921

    Article  Google Scholar 

  106. Li J, Lykotrafitis G, Dao M et al (2007) Cytoskeletal dynamics of human erythrocyte. Proc Natl Acad Sci U S A 104:4937

    Article  Google Scholar 

  107. Zhang R and Brown F (2008) Cytoskeleton mediated effective elastic properties of model red blood cell membranes. J Chem Phys 129:065101

    Article  Google Scholar 

  108. Park Y, Best C, Auth T et al (2010) Metabolic remodeling of the human red blood cell membrane. Proc Natl Acad Sci U S A 107:1289

    Article  Google Scholar 

  109. Sheetz M and Singer S (1977) On the mechanism of ATP-induced shape changes in human erythrocyte membranes. I. The role of the spectrin complex. J Cell Biol 73:638–646

    Article  Google Scholar 

  110. Auth T, Safran S, and Gov N (2007) Fluctuations of coupled fluid and solid membranes with application to red blood cells. Phys Rev E 76:51910

    Article  Google Scholar 

  111. Tuvia S, Almagor A, Bitler A et al (1997) Cell membrane fluctuations are regulated by medium macroviscosity: evidence for a metabolic driving force. Proc Natl Acad Sci U S A 94:5045–5049

    Article  Google Scholar 

  112. Mizuno D, Tardin C, Schmidt C et al (2007) Nonequilibrium mechanics of active cytoskeletal networks. Science 315:370

    Article  Google Scholar 

  113. Liu F, Mizukami H, Sarnaik S et al (2005) Calcium-dependent human erythrocyte cytoskeleton stability analysis through atomic force microscopy. J Struct Biol 150:200–210

    Article  Google Scholar 

  114. Muller E, Hegewald H, Jaroszewicz K et al (1986) Turnover of phosphomonoester groups and compartmentation of polyphosphoinositides in human erythrocytes. Biochem J 235:775

    Google Scholar 

  115. Patel V and Fairbanks G (1981) Spectrin phosphorylation and shape change of human erythrocyte ghosts. J Cell Biol 88:430–440

    Article  Google Scholar 

  116. Agre P and Parker J (1989) Red blood cell membranes: structure, function, clinical implications. New York: CRC Press

    Google Scholar 

  117. Tchernia G, Mohandas N, and Shohet S (1981) Deficiency of skeletal membrane protein band 4.1 in homozygous hereditary elliptocytosis. Implications for erythrocyte membrane stability. J Clin Invest 68:454

    Article  Google Scholar 

  118. Suresh S (2006) Mechanical response of human red blood cells in health and disease: some structure-property-function relationships. J Mater Res 21:1872

    Article  MathSciNet  Google Scholar 

  119. Fred M and Pickens M (1969) Metabolic dependence of red cell deformability. J Clin Invest 48:795

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the mentoring provided by the late Michael Feld. The authors acknowledge fruitful collaborations with the groups lead by Subra Suresh, Alex Levine, Nir Gov, and Sam Safran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Popescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Park, Y., Best, C.A., Popescu, G. (2011). Optical Sensing of Red Blood Cell Dynamics. In: Wagoner Johnson, A., Harley, B. (eds) Mechanobiology of Cell-Cell and Cell-Matrix Interactions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8083-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8083-0_13

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-8082-3

  • Online ISBN: 978-1-4419-8083-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics