Skip to main content

Tools for Studying Biomechanical Interactions in Cells

  • Chapter
  • First Online:

Abstract

Cells interact with their environment through forces that are generated and sensed by the cell. Forces generated by cells are in the few nanoNewton to several microNewton range and can change spatially over subcellular size scales. Transducing forces at such size and force scales requires development of platforms that can mechanically interface with cells. We describe several techniques that have been developed to study the role of mechanical forces in cellular processes. The measurement tools include those to measure the forces exerted by the cell on the extracellular environment, internal forces of contraction and the cytoskeletal properties.

This chapter is part of Section IV: Tools for Exploring Mechanobiology

These authors contributed equally.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. An, SS, CM Pennella, et al. (2005). Hypoxia alters biophysical properties of endothelial cells via p38 MAPK- and Rho kinase-dependent pathways. Am J Physiol Cell Physiol 289(3): C521–C530.

    Article  Google Scholar 

  2. Ashkin, A, DJ M., et al. (1986). Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11(5): 288.

    Article  Google Scholar 

  3. Atherton, BT, DM Meyer, et al. (1986). Assembly and remodelling of myofibrils and intercalated discs in cultured neonatal rat heart cells. J Cell Sci 86: 233–248.

    Google Scholar 

  4. Balaban, NQ, US Schwarz, et al. (2001). Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3(5): 466–472.

    Article  Google Scholar 

  5. Bao, G and S Suresh (2003). Cell and molecular mechanics of biological materials. Nat Mater 2: 715–725.

    Article  Google Scholar 

  6. Baumgartner, W, GJ Schutz, et al. (2003). Cadherin function probed by laser tweezer and single molecule fluorescence in vascular endothelial cells. J Cell Sci 116(6): 1001–1011.

    Article  Google Scholar 

  7. Beningo, KA, M Dembo, et al. (2001). Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J Cell Biol 153(4): 881–888.

    Article  Google Scholar 

  8. Beningo, KA, K Hamao, et al. (2006). Traction forces of fibroblasts are regulated by the Rho-dependent kinase but not by the myosin light chain kinase. Arch Biochem Biophys 456(2): 224–231.

    Article  Google Scholar 

  9. Benjamin, JM, AV Kwiatkowski, et al. (2010). Alpha E-catenin regulates actin dynamics independently of cadherin-mediated cell-cell adhesion. J Cell Biol 189(2): 339–352.

    Article  Google Scholar 

  10. Benoit, M, D Gabriel, et al. (2000). Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nat Cell Biol 2(6): 313–317.

    Article  Google Scholar 

  11. Binnig, G, H Rohrer, et al. (1982). Surface Studies by Scanning Tunneling Microscopy. Phys Rev Lett 49(1): 57.

    Article  Google Scholar 

  12. Binnig, G, CF Quate, et al. (1986). Atomic force microscope. Phys Rev Lett 56(9): 930.

    Article  Google Scholar 

  13. Borghi, N, M Lowndes, et al. (2010). Regulation of cell motile behavior by crosstalk between cadherin- and integrin-mediated adhesions. PNAS 107(30): 13324–13329.

    Article  Google Scholar 

  14. Brady, AJ (1991). Mechanical properties of isolated cardiac myocytes. Physiol Rev 71(2): 413–428.

    Google Scholar 

  15. Brandt, PW, F Colomo, et al. (1998). Force regulation by Ca2+ in skinned single cardiac myocytes of frog. Biophys J 74(4): 1994–2004.

    Article  Google Scholar 

  16. Brown, TD (2000). Techniques for mechanical stimulation of cells in vitro: a review. J Biomech 33(1): 3–14.

    Article  Google Scholar 

  17. Chen, J, B Fabry, et al. (2001). Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells. Am J Physiol Cell Physiol 280(6): C1475–C1484.

    Google Scholar 

  18. Chen, J, H Li, et al. (2007). Alpha-smooth muscle actin expression enhances cell traction force. Cell Motil Cytoskeleton 64(4): 248–257.

    Article  Google Scholar 

  19. Curtze, S, M Dembo, et al. (2004). Dynamic changes in traction forces with DC electric field in osteoblast-like cells. J Cell Sci 117(13): 2721–2729.

    Article  Google Scholar 

  20. Dao, M, CT Lim, et al. (2003). Mechanics of the human red blood cell deformed by optical tweezers. J Mech Phys Solids 51(11–12): 2259–2280.

    Article  Google Scholar 

  21. del Rio, A, R Perez-Jimenez, et al. (2009). Stretching single talin rod molecules activates vinculin binding. Science 323(5914): 638–641.

    Article  Google Scholar 

  22. Deshpande, VS, RM McMeeking, et al. (2006). A bio-chemo-mechanical model for cell contractility. Proc Natl Acad Sci USA 103(38): 14015–14020.

    Article  Google Scholar 

  23. Desmouliere, A, C Chaponnier, et al. (2005). Tissue repair, contraction, and the myofibroblast. Wound Repair Regen 13(1): 7–12.

    Article  Google Scholar 

  24. Desprat, N, A Richert, et al. (2005). Creep Function of a Single Living Cell. Biophys J 88(3): 2224–2233.

    Article  Google Scholar 

  25. Dike, LE, CS Chen, et al. (1999). Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates. In Vitro Cell Dev Biol Anim 35(8): 441–448.

    Article  Google Scholar 

  26. Discher, DE, P Janmey, et al. (2005). Tissue Cells Feel and Respond to the Stiffness of Their Substrate. Science 310(5751): 1139–1143.

    Article  Google Scholar 

  27. du Roure, O, A Saez, et al. (2005). Force mapping in epithelial cell migration. Proc Natl Acad Sci USA 102(7): 2390–2395.

    Article  Google Scholar 

  28. Ebenstein, DM and LA Pruitt (2006). Nanoindentation of biological materials. Nano Today 1(3): 26–33.

    Article  Google Scholar 

  29. Eckes, B, MC Zweers, et al. (2006). Mechanical tension and integrin alpha 2 beta 1 regulate fibroblast functions. J Investig Dermatol Symp Proc 11(1): 66–72.

    Article  Google Scholar 

  30. Ehler, E and JC Perriard (2000). Cardiomyocyte cytoskeleton and myofibrillogenesis in healthy and diseased heart. Heart Fail Rev 5(3): 259–269.

    Article  Google Scholar 

  31. Ehrlich, JS, MDH Hansen, et al. (2002). Spatio-temporal regulation of Rac1 localization and lamellipodia dynamics during epithelial cell-cell adhesion. Dev Cell 3(2): 259–270.

    Article  Google Scholar 

  32. Engler, AJ, S Sen, et al. (2006). Matrix elasticity directs stem cell lineage specification. Cell 126(4): 677–689.

    Article  Google Scholar 

  33. Evans, E and A Yeung (1989). Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys J 56(1): 151–160.

    Article  Google Scholar 

  34. Fernandez, P and A Ott (2008). Single cell mechanics: stress stiffening and kinematic hardening. Phys Rev Lett 100(23): 238102.

    Article  Google Scholar 

  35. Fernandez, P, PA Pullarkat, et al. (2006). A master relation defines the nonlinear viscoelasticity of single fibroblasts. Biophys J 90(10): 3796–3805.

    Article  Google Scholar 

  36. Finer, JT, RM Simmons, et al. (1994). Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368(6467): 113–119.

    Article  Google Scholar 

  37. Frisen, M, M Magi, et al. (1969). Rheological analysis of soft collagenous tissue. Part II: experimental evaluations and verifications. J Biomech 2(1): 21–28.

    Google Scholar 

  38. Galbraith, CG and MP Sheetz (1997). A micromachined device provides a new bend on fibroblast traction forces. Proc Natl Acad Sci USA 94(17): 9114–9118.

    Article  Google Scholar 

  39. Ganz, A, M Lambert, et al. (2006). Traction forces exerted through N-cadherin contacts. Biol Cell 98(12): 721–730.

    Article  Google Scholar 

  40. Gardel, ML, B Sabass, et al. (2008). Traction stress in focal adhesions correlates biphasically with actin retrograde flow speed. J Cell Biol 183(6): 999–1005.

    Article  Google Scholar 

  41. Gaudet, C, WA Marganski, et al. (2003). Influence of type I collagen surface density on fibroblast spreading, motility, and contractility. Biophys J 85(5): 3329–3335.

    Article  Google Scholar 

  42. Geiger, B, JP Spatz, et al. (2009). Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10(1): 21–33.

    Article  Google Scholar 

  43. Ghosh, K, Z Pan, et al. (2007). Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties. Biomaterials 28(4): 671–679.

    Article  Google Scholar 

  44. Guilak, F, JR Tedrow, et al. (2000). Viscoelastic Properties of the Cell Nucleus. Biochem Biophys Res Commun 269(3): 781–786.

    Article  Google Scholar 

  45. Hahn, C and MA Schwartz (2009). Mechanotransduction in vascular physiology and atherogenesis. Nat Rev Mol Cell Biol 10(1): 53–62.

    Article  Google Scholar 

  46. Hale, CM, SX Sun, et al. (2009). Resolving the role of actoymyosin contractility in cell microrheology. PLoS One 4(9): e7054.

    Article  Google Scholar 

  47. Harris, AK, P Wild, et al. (1980). Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208(4440): 177–179.

    Article  Google Scholar 

  48. Hinz, B, SH Phan, et al. (2007). The myofibroblast: one function, multiple origins. Am J Pathol 170(6): 1807–1816.

    Article  Google Scholar 

  49. Hochmuth, RM (2000). Micropipette aspiration of living cells. J Biomech 33(1): 15–22.

    Article  Google Scholar 

  50. Huang, W, B Anvari, et al. (2003). Temporal effects of cell adhesion on mechanical characteristics of the single chondrocyte. J Orthopaed Res 21(1): 88–95.

    Article  Google Scholar 

  51. Ingber, DE (2003). Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci 116(Pt 7): 1157–1173.

    Article  Google Scholar 

  52. Ingber, DE (2003). Tensegrity II. How structural networks influence cellular information processing networks. J Cell Sci 116(Pt 8): 1397–1408.

    Google Scholar 

  53. Kempson, GE, H Muir, et al. (1973). The tensile properties of the cartilage of human femoral condyles related to the content of collagen and glycosaminoglycans. Biochim Biophys Acta 297(2): 456–472.

    Google Scholar 

  54. Kessler, D, S Dethlefsen, et al. (2001). Fibroblasts in mechanically stressed collagen lattices assume a "synthetic" phenotype. J Biol Chem 276(39): 36575–36585.

    Article  Google Scholar 

  55. Khatiwala, CB, SR Peyton, et al. (2006). Intrinsic mechanical properties of the extracellular matrix affect the behavior of pre-osteoblastic MC3T3-E1 cells. Am J Physiol Cell Physiol 290(6): C1640–C1650.

    Article  Google Scholar 

  56. Kim, J, J Park, et al. (2006). Realistic computational modeling for hybrid biopolymer microcantilevers. Conf Proc IEEE Eng Med Biol Soc 1: 2102–2105.

    Article  Google Scholar 

  57. Ko, KS, PD Arora, et al. (2001). Cadherins mediate intercellular mechanical signaling in fibroblasts by activation of stretch-sensitive calcium-permeable channels. J Biol Chem 276: 35967–35977.

    Article  Google Scholar 

  58. Ladoux, B, E Anon, et al. (2010). Strength dependence of cadherin-mediated adhesions. Biophys J 98(4): 534–542.

    Article  Google Scholar 

  59. Langlois, ED, GA Shaw, et al. (2007). Spring constant calibration of atomic force microscopy cantilevers with a piezosensor transfer standard. Rev Sci Instrum 78(9): 093705–093710.

    Article  Google Scholar 

  60. le Duc, Q, Q Shi, et al. (2010). Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II‚Äìdependent manner. J Cell Biol 189(7): 1107–1115.

    Article  Google Scholar 

  61. Lee, S, J Mandic, et al. (2007). Chemomechanical mapping of ligand-receptor binding kinetics on cells. Proc Natl Acad Sci USA 104(23): 9609–9614.

    Article  Google Scholar 

  62. Legant, WR, A Pathak, et al. (2009). Microfabricated tissue gauges to measure and manipulate forces from 3D microtissues. Proc Natl Acad Sci USA 106(25): 10097–10102.

    Article  Google Scholar 

  63. Lehoux, S, B Esposito, et al. (2005). Differential regulation of vascular focal adhesion kinase by steady stretch and pulsatility. Circulation 111(5): 643–649.

    Article  Google Scholar 

  64. Lele, TP, JE Sero, et al. (2007). Tools to study cell mechanics and mechanotransduction. Methods in Cell Biology. W. YuLi and E. D. Dennis, Academic. Vol. 83: 441, 443–472.

    Google Scholar 

  65. Lemmon, CA, NJ Sniadecki, et al. (2005). Shear force at the cell-matrix interface: enhanced analysis for microfabricated post array detectors. Mech Chem Biosyst 2(1): 1–16.

    Google Scholar 

  66. Levental, KR, H Yu, et al. (2009). Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5): 891–906.

    Article  Google Scholar 

  67. LeWinter, MM (2005). Functional consequences of sarcomeric protein abnormalities in failing myocardium. Heart Fail Rev 10(3): 249–257.

    Article  Google Scholar 

  68. Lin, G, KSJ Pister, et al. (1995). microscale force-transducer system to quantify isolated heart cell contractile characteristics. Sens Actuators A Phys 46(1–3): 233–236.

    Article  Google Scholar 

  69. Lin, G, KSJ Pister, et al. (1995). Novel microelectromechanical system force transducer to quantify contractile characteristics from isolated cardiac-muscle-cells. J Electrochem Soc 142(3): L31-L33.

    Article  Google Scholar 

  70. Lin, G, KSJ Pister, et al. (2000). Micromachined polysilicon heart cell force transducer. J Microelectromech S 9(1): 9–17.

    Article  Google Scholar 

  71. Lin, IK, Y-M Liao, et al. (2008). Viscoelastic mechanical behavior of soft microcantilever-based force sensors. App Phys Lett 93(25): 251907–251903.

    Article  Google Scholar 

  72. Liu, Z, JL Tan, et al. (2010). Mechanical tugging force regulates the size of cell-cell junctions. Proc Natl Acad Sci USA 107(22): 9944–9949.

    Article  Google Scholar 

  73. Lodish, H, A Berk, et al. (2007). Molecular Cell Biology (Lodish, Molecular Cell Biology), W. H. Freeman.

    Google Scholar 

  74. Makarenko, I, CA Opitz, et al. (2004). Passive stiffness changes caused by upregulation of compliant titin isoforms in human dilated cardiomyopathy hearts. Circ Res 95(7): 708–716.

    Article  Google Scholar 

  75. Motlagh, D, TJ Hartman, et al. (2003). Microfabricated grooves recapitulate neonatal myocyte connexin43 and N-cadherin expression and localization. J Biomed Mater Res A 67(1): 148–157.

    Article  Google Scholar 

  76. Mukundan, V and BL Pruitt (2009). MEMS Electrostatic Actuation in Conducting Biological Media. J Microelectromech Systems 18(2): 405–413.

    Article  Google Scholar 

  77. Mukundan, V, P Ponce, et al. (2009). Modeling and characterization of electrostatic comb-drive actuators in conducting liquid media. J Micromech Microeng 19(6): 065008.

    Article  Google Scholar 

  78. Munevar, S, Y Wang, et al. (2001). Traction force microscopy of migrating normal and H-ras transformed 3 T3 fibroblasts. Biophys J 80(4): 1744–1757.

    Article  Google Scholar 

  79. Munevar, S, YL Wang, et al. (2001). Distinct roles of frontal and rear cell-substrate adhesions in fibroblast migration. Mol Biol Cell 12(12): 3947–3954.

    Google Scholar 

  80. Nicolas, A, B Geiger, et al. (2004). Cell mechanosensitivity controls the anisotropy of focal adhesions. Proc Natl Acad Sci USA 101(34): 12520–12525.

    Article  Google Scholar 

  81. Nishimura, T and M Takeichi (2009). Remodeling of the adherens junctions during morphogenesis. Current Topics in Developmental Biology. L. Thomas, Academic Press. Volume 89: 33–54.

    Google Scholar 

  82. Nishimura, S, S-I Yasuda, et al. (2004). Single cell mechanics of rat cardiomyocytes under isometric, unloaded, and physiologically loaded conditions. Am J Physiol Heart Circ Physiol 287(1): H196–H202.

    Article  Google Scholar 

  83. Oster, GF, JD Murray, et al. (1983). Mechanical aspects of mesenchymal morphogenesis. J Embryol Exp Morphol 78: 83–125.

    Google Scholar 

  84. Panchawagh, HV, D Serrell, et al. (2005). Design and characterization of a BioMEMS device for in-vitro mechanical stimulation of single adherent cells. ASME Conf Proc 2005(4224X): 19–25.

    Google Scholar 

  85. Park, J, J Ryu, et al. (2005). Real-time measurement of the contractile forces of self-organized cardiomyocytes on hybrid biopolymer microcantilevers. Anal Chem 77(20): 6571–6580.

    Article  Google Scholar 

  86. Park, J, J Kim, et al. (2006). Fabrication of complex 3D polymer structures for cell-polymer hybrid systems. J Micromech Microeng 16: 1614–1619.

    Article  Google Scholar 

  87. Park, SJ, MB Goodman, et al. (2007). Analysis of nematode mechanics by piezoresistive displacement clamp. Proc Natl Acad Sci USA.

    Google Scholar 

  88. Park, S-J, Petzold B, et al. (2009). Piezoresistive cantilever-based force clamp system for the study of mechanotransduction in C. elegans. Proc MEMS, Sorrento, Italy.

    Google Scholar 

  89. Parodi, EN, GA Kaiser, et al. (1972). Comparative study of the tensile strength of autogenous systemic veins and preserved venous homografts. J Surg Res 12(2): 99–104.

    Article  Google Scholar 

  90. Paszek, MJ and VM Weaver (2004). The tension mounts: mechanics meets morphogenesis and malignancy. J Mammary Gland Biol Neoplasia 9(4): 325–342.

    Article  Google Scholar 

  91. Pelham, RJ, Jr. and Y Wang (1999). High resolution detection of mechanical forces exerted by locomoting fibroblasts on the substrate. Mol Biol Cell 10(4): 935–945.

    Google Scholar 

  92. Petzold, BC, S-J Park, et al. (2009). The contribution of body wall muscles to C. elegans body mechanics determined using piezoresistive microcantilevers. Proc MicroTAS, Jeju, South Korea.

    Google Scholar 

  93. Peyton, S, C Ghajar, et al. (2007). The emergence of ECM mechanics and cytoskeletal tension as important regulators of cell function. Cell Biochem Biophys 47: 300–320.

    Article  Google Scholar 

  94. Pratt, JR, DT Smith, et al. (2004). Progress toward Systéme International d'Unités traceable force metrology for nanmechanics. J Mat Res 19(1): 366–379.

    Google Scholar 

  95. Rabinovitz, I and AM Mercurio (1996). The integrin alpha 6 beta 4 and the biology of carcinoma. Biochem Cell Biol 74(6): 811–821.

    Article  Google Scholar 

  96. Rabinovitz, I, IK Gipson, et al. (2001). Traction forces mediated by alpha6beta4 integrin: implications for basement membrane organization and tumor invasion. Mol Biol Cell 12(12): 4030–4043.

    Google Scholar 

  97. Rowat, AC, J Lammerding, et al. (2006). Mechanical properties of the cell nucleus and the effect of emerin deficiency. Biophys J 91(12): 4649–4664.

    Article  Google Scholar 

  98. Saez, A, M Ghibaudo, et al. (2007). Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proc Natl Acad Sci USA 104(20): 8281–8286.

    Article  Google Scholar 

  99. Sathuluri, RR, S Yamamura, et al. (2008). Microsystems technology and biosensing. Adv Biochem Eng Biotechnol 109: 285–350.

    Google Scholar 

  100. Schoen, I, W Hu, et al. (2010). Probing cellular traction forces by micropillar arrays: contribution of substrate warping to pillar deflection. Nano Lett 10(5): 1823–1830.

    Article  Google Scholar 

  101. Serrell, D, J Law, et al. (2008). A uniaxial bioMEMS device for imaging single cell response during quantitative force-displacement measurements. Biomed Microdevices 10(6): 883–889.

    Article  Google Scholar 

  102. Siechen, S, S Yang, et al. (2009). Mechanical tension contributes to clustering of neurotransmitter vesicles at presynaptic terminals. Proc Natl Acad Sci USA 106(31): 12611–12616.

    Article  Google Scholar 

  103. Sniadecki, NJ and CS Chen (2007). Microfabricated silicone elastomeric post arrays for measuring traction forces of adherent cells. Methods Cell Biol 83: 313–328.

    Article  Google Scholar 

  104. Sniadecki, NJ, A Anguelouch, et al. (2007). Magnetic microposts as an approach to apply forces to living cells. Proc Natl Acad Sci USA 104(37): 14553–14558.

    Article  Google Scholar 

  105. Solon, J, I Levental, et al. (2007). Fibroblast Adaptation and Stiffness Matching to Soft Elastic Substrates. Biophys J 93(12): 4453–4461.

    Article  Google Scholar 

  106. Suresh, S, J Spatz, et al. (2005). Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater 1(1): 15–30.

    Article  Google Scholar 

  107. Tan, JL, J Tien, et al. (2003). Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci USA 100(4): 1484–1489.

    Article  Google Scholar 

  108. Tan, JL, W Liu, et al. (2004). Simple approach to micropattern cells on common culture substrates by tuning substrate wettability. Tissue Eng 10(5–6):865–872.

    Article  Google Scholar 

  109. Tasche, C, E Meyhofer, et al. (1999). A force transducer for measuring mechanical properties of single cardiac myocytes. Am J Physiol 277(6 Pt 2): H2400–H2408.

    Google Scholar 

  110. Thoumine, O and A Ott (1997). Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation. J Cell Sci 110(17): 2109–2116.

    Google Scholar 

  111. Thoumine, O, P Kocian, et al. (2000). Short-term binding of fibroblasts to fibronectin: optical tweezers experiments and probabilistic analysis. Eur Biophys J 29(6): 398–408.

    Google Scholar 

  112. Thoumine, O, M Lambert, et al. (2006). Regulation of N-Cadherin dynamics at neuronal contacts by ligand binding and cytoskeletal coupling. Molecular Biology of the Cell 17(2): 862–875.

    Article  Google Scholar 

  113. Timoshenko, SP and JM Gere (1963). Theory of Elastic Stability, McGraw-Hill.

    Google Scholar 

  114. Van Vliet, KJ, G Bao, et al. (2003). The biomechanics toolbox: experimental approaches for living cells and biomolecules. Acta Mater 51(19): 5881–5905.

    Article  Google Scholar 

  115. Vannier, C, H Chevassus, et al. (1996). Ca-dependence of isometric force kinetics in single skinned ventricular cardiomyocytes from rats. Cardiovasc Res 32(3): 580–586.

    Google Scholar 

  116. Vaziri, A and MRK Mofrad (2007). Mechanics and deformation of the nucleus in micropipette aspiration experiment. J Biomech 40(9): 2053–2062.

    Article  Google Scholar 

  117. Vogel, V and M Sheetz (2006). Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7(4): 265–275.

    Article  Google Scholar 

  118. Voronov, DA, PW Alford, et al. (2004). The role of mechanical forces in dextral rotation during cardiac looping in the chick embryo. Dev Biol 272(2): 339–350.

    Article  Google Scholar 

  119. Wang, N, K Naruse, et al. (2001). Mechanical behavior in living cells consistent with the tensegrity model. Proc Natl Acad Sci USA 98(14): 7765–7770.

    Article  Google Scholar 

  120. Wehrle-Haller, B and BA Imhof (2002). The inner lives of focal adhesions. Trends Cell Biol 12(8): 382–389.

    Article  Google Scholar 

  121. Wozniak, MA, K Modzelewska, et al. (2004). Focal adhesion regulation of cell behavior. Biochim Biophy Acta Mol Cell Res 1692(2–3): 103–119.

    Google Scholar 

  122. Yamada, S and WJ Nelson (2007). Localized zones of Rho and Rac activities drive initiation and expansion of epithelial cell-cell adhesion. J Cell Biol 178(3): 517–527.

    Article  Google Scholar 

  123. Yang, S and T Saif (2005). Micromachined force sensors for the study of cell mechanics. Rev Sci Instrum 76(4): 044301–044308.

    Article  Google Scholar 

  124. Yang, S and T Saif (2005). Reversible and repeatable linear local cell force response under large stretches. Exp Cell Res 305(1): 42–50.

    Article  Google Scholar 

  125. Yonemura, S, Y Wada, et al. (2010). [alpha]-Catenin as a tension transducer that induces adherens junction development. Nat Cell Biol 12(6): 533–542.

    Article  Google Scholar 

  126. Zaouk, R, BY Park, et al. (2006). Introduction to microfabrication techniques. Methods Mol Biol 321: 5–15.

    Google Scholar 

  127. Zemel, A, F Rehfeldt, et al. (2010). Optimal matrix rigidity for stress-fibre polarization in stem cells. Nat Phys 6(6): 468–473.

    Article  Google Scholar 

  128. Zhao, Y and X Zhang (2006). Cellular mechanics study in cardiac myocytes using PDMS pillar array. Sensor Actuat A-Phys 125: 398–404.

    Article  Google Scholar 

  129. Zhao, Y, CC Lim, et al. (2005). Cellular force measurements using single-spaced polymeric microstructures: isolating cells from base substrate. J Micromech Microeng 15: 1649–1656.

    Article  Google Scholar 

  130. Zhao, Y, CC Lim, et al. (2006). Microchip for subcellular mechanics study in living cells. Sensor Actuat B-Chem 114: 1108–1115.

    Article  Google Scholar 

  131. Zhao, Y, CC Lim, et al. (2007). Simultaneous orientation and cellular force measurements in adult cardiac myocytes using three-dimensional polymeric microstructures. Cell Motil Cytoskel 64(9): 718–725.

    Article  Google Scholar 

  132. Zhu, C, G Bao, et al. (2000). Cell mechanics: mechanical response, cell adhesion and molecular deformation. Annu Rev Biomed Eng 2: 189–226.

    Article  Google Scholar 

  133. Wang, H-B and M Dembo (2000). Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am J Physiol - Cell Ph 279(5): C1345–C1350.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the National Science Foundation (EFRI-CBE 073555, CAREER ECS-0449400), the National Institutes of Health (R21 HL089027, R01 EB006745), the California Institute for Regenerative Medicine (CIRM RC1-00151-1), Stanford Center for Integrated Systems, and Stanford University (Bio-X Graduate Fellowship, Stanford Graduate Fellowship and a Stanford DARE Doctoral Fellowship).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beth L. Pruitt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Taylor, R.E., Mukundan, V., Pruitt, B.L. (2011). Tools for Studying Biomechanical Interactions in Cells. In: Wagoner Johnson, A., Harley, B. (eds) Mechanobiology of Cell-Cell and Cell-Matrix Interactions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8083-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8083-0_11

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-8082-3

  • Online ISBN: 978-1-4419-8083-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics