The Genetics of Autism

Part of the Autism and Child Psychopathology Series book series (ACPS)


This chapter is written to make the fast-paced, expanding field of the genetics of autism accessible to those practitioners who help children with autism. New genetic knowledge and technology have quickly developed over the past 30 years, particularly within the past decade, and have made many optimistic about our ability to explain autism. Among these advances include the sequencing of the human genome (Lander et al., 2001) and the identification of common genetic variants via the HapMap project (International HapMap Consortium, 2005), and the development of cost-efficient genotyping and analysis technologies (Losh, Sullivan, Trembath, & Piven, 2008). Improvement in technology has led to improved visualization of chromosomal abnormality down to the molecular level. The four most common syndromes associated with autism include fragile X syndrome, tuberous sclerosis, 15q duplications, and untreated phenylketonuria (PKU; Costa e Silva, 2008). FXS and 15q duplications are discussed within the context of cytogenetics. TSC is illustrated within the description of linkage analysis.


Amyloid Precursor Protein Tuberous Sclerosis Complex Specific Language Impairment Prader Willi Syndrome Autism Genetic Resource Exchange 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Thanks to Bryan Maloney, M.S. for his help in editing this manuscript.


  1. Abrahams, B. S., & Geschwind, D. H. (2008). Advances in autism genetics: On the threshold of a new neurobiology. Nature Reviews Genetics, 9(5), 341–355.PubMedGoogle Scholar
  2. Alarcon, M., Abrahams, B. S., Stone, J. L., Duvall, J. A., Perederiy, J. V., Bomar, J. M., et al. (2008). Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. American Journal of Human Genetics, 82(1), 150–159.PubMedGoogle Scholar
  3. Alley, G. M., Bailey, J. A., Chen, D. -M., Ray, B., Puli, L. K., Tanila, H., et al. (2010). Memantine lowers amyloid-beta peptide levels in neuronal cultures and in APP/PS1 transgenic mice. Journal of Neuroscience Research, 88, 143–154.PubMedGoogle Scholar
  4. Ashley-Koch, A. E., Jaworski, J., Ma de, Q., Mei, H., Ritchie, M. D., Skaar, D. A., et al. (2007). Investigation of potential gene–gene interactions between APOE and RELN contributing to autism risk. Psychiatric Genetics, 17, 221–226.PubMedGoogle Scholar
  5. Au, K. S., Williams, A. T., Gambello, M. J., & Northrup, H. (2004). Molecular genetic basis of tuberous sclerosis complex: From bench to bedside. Journal of Child Neurology, 19, 699–709.PubMedGoogle Scholar
  6. Bailey, A. R., Giunta, B. N., Obregon, D., Nikolic, W. V., Tian, J., Sanberg, C. D., et al. (2008). Peripheral biomarkers in autism: Secreted amyloid precursor protein-alpha as a probable key player in early diagnosis. International Journal of Clinical Experimental Medicine, 1, 338–344.PubMedGoogle Scholar
  7. Bailey, A., Le Couteur, A., Gottesman, I., Bolton, P., Simonoff, E., Yuzda, E., et al. (1995). Autism as a strongly genetic disorder: Evidence from a British twin study. Psychological Medicine, 25, 63–77.PubMedGoogle Scholar
  8. Bakkaloglu, B., O’Roak, B. J., Louvi, A., Gupta, A. R., Abelson, J. F., Morgan, T. M., et al. (2008). Molecular cytogenetic analysis and resequencing of contactin associated protein-like 2 in autism spectrum disorders. American Journal of Human Genetics, 82, 165–173.PubMedGoogle Scholar
  9. Bartlett, C. W., Flax, J. F., Logue, M. W., Smith, B. J., Vieland, V. J., Tallal, P., et al. (2004). Examination of potential overlap in autism and language loci on chromosomes 2, 7, and 13 in two independent samples ascertained for specific language impairment. Human Hereditary, 57, 10–20.Google Scholar
  10. Bartlett, C. W., Flax, J. F., Logue, M. W., Vieland, V. J., Bassett, A. S., Tallal, P., et al. (2002). A major susceptibility locus for specific language impairment is located on 13q21. American Journal of Human Genetics, 71, 45–55.PubMedGoogle Scholar
  11. Basehore, M. J., & Friez, M. J. (2009). Molecular Analysis of Fragile X Syndrome. Current Protocols in Human Genetics, 63 (Chapter 9, Unit 9).Google Scholar
  12. Bear, M. F. (2005). Therapeutic implications of the mGluR theory of fragile X mental retardation. Genes Brain & Behavior, 4, 393–398.Google Scholar
  13. Bear, M. F., Huber, K. M., & Warren, S. T. (2004). The mGluR theory of fragile X mental retardation. Trends in Neuroscience, 27, 370–377.Google Scholar
  14. Berry-Kravis, E., Potanas, K., Weinberg, D., Zhou, L., & Goetz, C. G. (2005). Fragile X-associated tremor/ataxia syndrome in sisters related to X-inactivation. Annals of Neurology, 57, 144–147.PubMedGoogle Scholar
  15. Butler, M. G., Dasouki, M. J., Zhou, X. P., Talebizadeh, Z., Brown, M., Takahashi, T. N., et al. (2005). Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. Journal of Medical Genetics, 42, 318–321.PubMedGoogle Scholar
  16. Buxbaum, J. D., Cai, G., Chaste, P., Nygren, G., Goldsmith, J., Reichert, J., et al. (2007). Mutation screening of the PTEN gene in patients with autism spectrum disorders and macrocephaly. American Journal of Medical Genetics, 144B, 484–491.PubMedGoogle Scholar
  17. Cantor, R. M., Kono, N., Duvall, J. A., Alvarez-Retuerto, A., Stone, J. L., Alarcon, M., et al. (2005). Replication of autism linkage: Fine-mapping peak at 17q21. American Journal of Human Genetics, 76, 1050–1056.PubMedGoogle Scholar
  18. Collaborative Linkage Study of Autism (CLSA). (1999). An autosomal genomic screen for autism. American Journal of Medical Genetics, 88, 609–615.Google Scholar
  19. Collaborative Linkage Study of Autism. (2001). An autosomal genomic screen for autism. American Journal of Medical Genetics, 105, 609–615.Google Scholar
  20. Cook, E. H., Jr., Leventhal, B. L., Heller, W., Metz, J., Wainwright, M., & Freedman, D. X. (1990). Autistic children and their first degree relatives: Relationships between serotonin and norepinephrine levels and intelligence. The Journal of Neuropsychiatry and Clinical Neurosciences, 2, 268–274.PubMedGoogle Scholar
  21. Cook, E. H., Jr., Lindgren, V., Leventhal, B. L., Courchesne, R., Lincoln, A., Shulman, C., et al. (1997). Autism or atypical autism in maternally but not paternally derived proximal 15q duplication. American Journal of Human Genetics, 60, 928–934.PubMedGoogle Scholar
  22. Costa e Silva, J. A. (2008). Autism, a brain developmental disorder: Some new pathophysiologic and genetics findings. Metabolism, 57(Suppl 2), S40–S43.PubMedGoogle Scholar
  23. Courchesne, E., Carper, R., & Akshoomoff, N. (2003). Evidence of brain overgrowth in the first year of life in autism. Journal of the American Medical Association, 290, 337–344.PubMedGoogle Scholar
  24. Courchesne, E., Karns, C. M., Davis, H. R., Ziccardi, R., Carper, R. A., Tigue, Z. D., et al. (2001). Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study. Neurology, 57, 245–254.PubMedGoogle Scholar
  25. Cuccaro, M. L., Shao, Y., Grubber, J., Slifer, M., Wolpert, C. M., Donnelly, S. L., et al. (2003). Factor analysis of restricted and repetitive behaviors in autism using the autism diagnostic interview-R. Child Psychiatry and Human Development, 34, 3–17.PubMedGoogle Scholar
  26. DiCicco-Bloom, E. (2006). Neuron, know thy neighbor. Science, 311, 1560–1562.PubMedGoogle Scholar
  27. Dolen, G., Osterweil, E., Rao, B. S., Smith, G. B., Auerbach, B. D., Chattarji, S., et al. (2007). Correction of fragile X syndrome in mice. Neuron, 59, 955–962.Google Scholar
  28. Durand, C. M., Betancur, C., Boeckers, T. M., Bockmann, J., Chaste, P., Fauchereau, F., et al. (2007). Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nature Genetics, 39, 25–27.PubMedGoogle Scholar
  29. D’Agata, V., Warren, S. T., Zhao, W., Torre, E. R., Alkon, D. L., & Cavallaro, S. (2002). Gene expression profiles in a transgenic animal model of fragile X syndrome. Neurobiology of Disease, 10, 211–218.PubMedGoogle Scholar
  30. Einfeld, S., Molony, H., & Hall, W. (1989). Autism is not associated with the fragile X syndrome. American Journal of Medical Genetics, 34, 187–193.PubMedGoogle Scholar
  31. Etherton, M. R., Blaiss, C. A., Powell, C. M., & Sudhof, T. C. (2009). Mouse neurexin-1alpha deletion causes correlated electrophysiological and behavioral changes consistent with cognitive impairments. Proceedings of the National Academy of Sciences, 106, 17998–18003.Google Scholar
  32. Feng, J., Schroer, R., Yan, J., Song, W., Yang, C., Bockholt, A., et al. (2006). High frequency of neurexin 1beta signal peptide structural variants in patients with autism. Neuroscience Letters, 409, 10–13.PubMedGoogle Scholar
  33. Folstein, S., & Rutter, M. (1977). Infantile autism: A genetic study of 21 twin pairs. Journal of Child Psychology and Psychiatry, 18, 297–321.PubMedGoogle Scholar
  34. Freitag, C. M. (2007). The genetics of autistic disorders and its clinical relevance: A review of the literature. Molecular Psychiatry, 12, 2–22.PubMedGoogle Scholar
  35. Fryer, A. E., Chalmers, A., Connor, J. M., Fraser, I., Povey, S., Yates, A. D., et al. (1987). Evidence that the gene for tuberous sclerosis is on chromosome 9. Lancet, 1, 659–661.PubMedGoogle Scholar
  36. Geschwind, D. H. (2009). Advances in autism. Annual Review of Medicine, 60, 367–380.PubMedGoogle Scholar
  37. Geschwind, D. H., & Konopka, G. (2009). Neuroscience in the era of functional genomics and systems biology. Nature, 461, 908–915.PubMedGoogle Scholar
  38. Glessner, J. T., Wang, K., Cai, G., Korvatska, O., Kim, C. E., Wood, S., et al. (2009). Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature, 459, 569–573.PubMedGoogle Scholar
  39. Gupta, A. R., & State, M. W. (2007). Recent advances in the genetics of autism. Biological Psychiatry, 61, 429–437.PubMedGoogle Scholar
  40. Hagerman, R. J. (2002). The physical and behavioral phenotype. In R. J. Hagerman & P. J. Hagerman (Eds.), Fragile X syndrome: Diagnosis, treatment, and research (3rd ed., pp. 3–109). Baltimore: Johns Hopkins University Press.Google Scholar
  41. Hagerman, R. J. (2006). Lessons from fragile X regarding neurobiology, autism, and neurodegeneration. Journal of Developmental Behavioral Pediatrics, 27, 63–74.Google Scholar
  42. Hagerman, R. J., Leehey, M., Heinrichs, W., Tassone, F., Wilson, R., Hills, J., et al. (2001). Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X. Neurology, 57, 127–130.PubMedGoogle Scholar
  43. Herbert, M. R., Harris, G. J., Adrien, K. T., Ziegler, D. A., Makris, N., Kennedy, D. N., et al. (2002). Abnormal asymmetry in language association cortex in autism. Annals of Neurology, 52, 588–596.PubMedGoogle Scholar
  44. Herbert, M. R., Ziegler, D. A., Makris, N., Filipek, P. A., Kemper, T. L., Normandin, J. J., et al. (2004). Localization of white matter volume increase in autism and developmental language disorder. Annals of Neurology, 55, 530–540.PubMedGoogle Scholar
  45. Herman, G. E., Butter, E., Enrile, B., Partore, M., Prior, T. W., & Sommer, A. (2007b). Increasing knowledge of PTEN germline mutations: Two additional patients with autism and macrocephaly. American Journal of Medical Genetics, 143, 589–593.PubMedGoogle Scholar
  46. Herman, G. E., Henninger, N., Ratliff-Schaub, K., Pastore, M., Fitzgerald, S., & MCBride, K. L. (2007a). Genetic testing in autism: How much is enough? Genetics in Medicine, 9, 268–273.PubMedGoogle Scholar
  47. International HapMap Consortium. (2005). A haplotype map of the human genome. Nature, 437, 1299–1320.Google Scholar
  48. International Molecular Genetic Study of Autism Consortium (IMGSAC). (1998). A full genome screen for autism with evidence for linkage to a region on chromosome 7q. International molecular genetic study of autism consortium. Human Molecular Genetics, 7, 571–578.Google Scholar
  49. International Molecular Genetic Study of Autism Consortium (IMGSAC). (2001a). Further characterization of the autism susceptibility locus AUTS1 on chromosome 7q. Human Molecular Genetics, 10, 973–982.PubMedGoogle Scholar
  50. International Molecular Genetic Study of Autism Consortium (IMGSAC). (2001b). A genomewide screen for autism: Strong evidence for linkage to chromosomes 2q, 7q, and 16p. American Journal of Human Genetics, 69, 570–581.PubMedGoogle Scholar
  51. Jackman, C., Horn, N. D., Molleston, J. P., & Sokol, D. K. (2009). Gene associated with seizures, autism, and hepatomegaly in an Amish girl. Pediatric Neurology, 40, 310–313.PubMedGoogle Scholar
  52. Jacquemont, M. L., Sanlaville, D., Redon, R., Raoul, O., Cormier-Daire, V., Lyonnet, S., et al. (2006). Array-based comparative genomic hybridisation identifies high frequency of cryptic chromosomal rearrangements in patients with syndromic autism spectrum disorders. Journal of Medical Genetics, 43, 843–849.PubMedGoogle Scholar
  53. Jamain, S., Quach, H., Betancur, C., Rastam, M., Colineaux, C., Gillberg, I. C., et al. (2003). Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nature Genetics, 34, 27–29.PubMedGoogle Scholar
  54. Kenerson, H. L., Aicher, L. D., True, L. D., & Yeung, R. S. (2002). Activated mammalian target of rapamycin pathway in the pathogenesis of tuberous sclerosis complex renal tumors. Cancer Research, 62, 5645–5650.Google Scholar
  55. Konopka, G., Bomar, J. M., Winden, K., Coppola, G., Jonsson, Z. O., Gao, F., et al. (2009). Human-specific transcriptional regulation of CNS development genes by FOXP2. Nature, 462, 213–217.PubMedGoogle Scholar
  56. Kwon, C. H., Luikart, B. W., Powell, C. M., Zhou, J., Matheny, S. A., Zhang, W., et al. (2006). Pten regulates neuronal arborization and social interaction in mice. Neuron, 50, 377–388.PubMedGoogle Scholar
  57. Lahiri, D. K., Farlow, M. R., Greig, N. H., Giacobini, E., & Schneider, L. S. (2003). A critical analysis of new molecular targets and strategies for drug developments in Alzheimer’s disease. Current Drug Targets, 4, 97–112.PubMedGoogle Scholar
  58. Lahiri, D. K., Maloney, B., & Zawia, N. H. (2009). The LEARn model: An epigenetic explanation for idiopathic neurobiological diseases. Molecular Psychiatry, 14, 992–1003.PubMedGoogle Scholar
  59. Lai, C. S., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F., & Monaco, A. P. (2001). A forkhead-domain gene is mutated in a severe speech and language disorder. Nature, 413, 519–523.PubMedGoogle Scholar
  60. Lander, E., & Kruglyak, L. (1995). Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nature Genetics, 11, 241–247.PubMedGoogle Scholar
  61. Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., et al. (2001). Initial sequencing and analysis of the human genome. Nature, 409, 860–921.PubMedGoogle Scholar
  62. Laumonnier, F., Bonnet-Brilhault, F., Gomot, M., Blanc, R., David, A., Moizard, M. P., et al. (2004). X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. American Journal of Human Genetics, 74, 552–557.PubMedGoogle Scholar
  63. Lawson-Yuen, A., Saldivar, J. S., Sommer, S., & Picker, J. (2008). Familial deletion within NLGN4 associated with autism and Tourette syndrome. European Journal of Human Genetics, 16, 614–618.PubMedGoogle Scholar
  64. Li, M. M., & Andersson, H. C. (2009). Clinical application of microarray-based molecular cytogenetics: An emerging new era of genomic medicine. Journal of Pediatrics, 155, 311–317.PubMedGoogle Scholar
  65. Li, J., Nguyen, L., Gleason, C., Lotspeich, L., Spiker, D., Risch, N., et al. (2004). Lack of evidence for an association between WNT2 and RELN polymorphisms and autism. American Journal of Medical Genetics, 126B, 51–57.PubMedGoogle Scholar
  66. Lien, W. H., Klezovitch, O., & Vasioukhin, V. (2006). Cadherin–catenin proteins in vertebrate development. Current Opinion Cell Biology, 18, 499–506.Google Scholar
  67. Lintas, C., & Persico, A. M. (2009). Autistic phenotypes and genetic testing: State-of-the-art for the clinical geneticist. Journal of Medical Genetics, 46, 1–8.PubMedGoogle Scholar
  68. Losh, M., Sullivan, P. F., Trembath, D., & Piven, J. (2008). Current developments in the genetics of autism: From phenome to genome. Journal of Neuropathological Exp Neurology, 67, 829–837.Google Scholar
  69. Lubs, H. A. (1969). A marker X chromosome. Am J Hum Genet, 21(3), 231–244.PubMedGoogle Scholar
  70. Maes, B., Fryns, J. P., Van Walleghem, M., & Van den Berghe, H. (1993). Fragile-X syndrome and autism: A prevalent association or a misinterpreted connection? Genetic Counseling, 4, 245–263.PubMedGoogle Scholar
  71. Mahr, R. N., Moberg, P. J., Overhauser, J., Strathdee, G., Kamhoampbell, J., Loevner, L. A. et al. (1996). Neuropsychiatry of 18q-. American Journal of Medical Genetics, 67, 172C–178C.Google Scholar
  72. Marco, E. J., & Skuse, D. H. (2006). Autism-lessons from the X chromosome. Social Cognitive and Affective Neuroscience, 1, 183–193.PubMedGoogle Scholar
  73. Marshall, C. R., Noor, A., Vincent, J. B., Lionel, A. C., Feuk, L., Skaug, J., et al. (2008). Structural variation of chromosomes in autism spectrum disorder. American Journal of Human Genetics, 82, 477–488.PubMedGoogle Scholar
  74. Mattson, M. P., & Furukawa, K. (1998). Signaling events regulating the neurodevelopmental triad. Glutamate and secreted forms of beta-amyloid precursor protein as examples. Perspectives on Developmental Neurobiology, 5, 337–352.PubMedGoogle Scholar
  75. McCaffery, P., & Deutsch, C. K. (2005). Macrocephaly and the control of brain growth in autistic disorders. Progress in Neurobiology, 77, 38–56.PubMedGoogle Scholar
  76. Mendelsohn, N. J., & Schaefer, G. B. (2008). Genetic evaluation of autism. Seminars in Pediatric Neurology, 15, 27–31.PubMedGoogle Scholar
  77. Moessner, R., Marshall, C. R., Sutcliffe, J. S., Skaug, J., Pinto, D., Vincent, J., et al. (2007). Contribution of SHANK3 mutations to autism spectrum disorder. American Journal of Medical Genetics, 81, 1289–1297.Google Scholar
  78. Morgan, L., Wetherby, A. M., & Barber, A. (2008). Repetitive and stereotyped movements in children with autism spectrum disorders late in the second year of life. Journal of Child Psychology & Psychiatry, 49, 826–837.Google Scholar
  79. Morrow, E. M., Yoo, S. Y., Flavell, S. W., Kim, T. K., Lin, Y., Hill, R. S., et al. (2008). Identifying autism loci and genes by tracing recent shared ancestry. Science, 321, 218–223.PubMedGoogle Scholar
  80. Muhle, R., Trentacoste, S. V., & Rapin, I. (2004). The genetics of autism. Pediatrics, 113, 472–486.Google Scholar
  81. Newbury, D. F., Bonora, E., Lamb, J. A., Fisher, S. E., Lai, C. S., Baird, G., et al. (2002). FOXP2 is not a major susceptibility gene for autism or specific language impairment. American Journal of Human Genetics, 70, 1318–1327.PubMedGoogle Scholar
  82. O’Brien, E. K., Zhang, X., Nishimura, C., Tomblin, J. B., & Murray, J. C. (2003). Association of specific language impairment (SLI) to the region of 7q31. American Journal of Human Genetics, 72, 1536–1543.PubMedGoogle Scholar
  83. O’Roak, B. J., & State, M. W. (2008). Autism genetics: Strategies, challenges, and opportunities. Autism Research, 1, 4–17.PubMedGoogle Scholar
  84. Pack, P. (2002). Biology (Cliffs AP) (2nd ed.). Hoboken, NJ: Wiley.Google Scholar
  85. Pennington, B. F. (2009). Diagnosing learning disorders: A neuropsychological framework. New York: Guilford Press.Google Scholar
  86. Persico, A. M., Pascucci, T., Puglisi-Allegra, S., Militerni, R., Bravaccio, C., Schneider, C., et al. (2002). Serotonin transporter gene promoter variants do not explain the hyperserotonemia in autistic children. Molecular Psychiatry, 7, 795–800.PubMedGoogle Scholar
  87. Pickles, A., Bolton, P., Macdonald, H., Bailey, A., Le Couteur, A., Sim, C. H., et al. (1995). Latent-class analysis of recurrence risks for complex phenotypes with selection and measurement error: A twin and family history study of autism. American Journal of Human Genetics, 57, 717–726.PubMedGoogle Scholar
  88. Piven, J. (1999). Genetic liability for autism: The behavioral expression in relatives. International Review of Psychiatry, 11, 299–308.Google Scholar
  89. Reichenberg, A., Gross, R., Weiser, M., Bresnahan, M., Silverman, J., Harlap, S., et al. (2006). Advancing paternal age and autism. Archives of General Psychiatry, 63, 1026–1032.PubMedGoogle Scholar
  90. Rutter, M. (2000). Genetic studies of autism: From the 1970s into the millennium. Journal of Abnormal Child Psychiatry, 28, 3–14.Google Scholar
  91. Schaefer, G. B., & Lutz, R. E. (2006). Diagnostic yield in the clinical genetics evaluation of autism spectrum disorders. Genetics in Medicine, 8, 549–556.PubMedGoogle Scholar
  92. Schaefer, G. B., & Mendelsohn, N. J. (2008). Genetics evaluation for the etiologic diagnosis of autism spectrum disorders. Genetics in Medicine, 10, 4–12.PubMedGoogle Scholar
  93. Schaefer, G. B., & Mendelsohn, N. J., Professional Practice and Guidelines Committee. (2008). Clinical genetics evaluation in identifying the etiology of autism spectrum disorders. Genetics in Medicine, 10, 301–305.PubMedGoogle Scholar
  94. Schellenberg, G. D., Dawson, G., Sung, Y. J., Estes, A., Munson, J., Rosenthal, E., et al. (2006). Evidence for multiple loci from a genome scan of autism kindreds. Molecular Psychiatry, 11, 1049–1060.PubMedGoogle Scholar
  95. Schroer, R. J., Phelan, M. C., Michaelis, R. C., Crawford, E. C., Skinner, S. A., Cuccaro, M., et al. (1998). Autism and maternally derived aberrations of chromosome 15q. American Journal of Medical Genetics, 76, 327–336.PubMedGoogle Scholar
  96. Sebat, J., Lakshmi, B., Malhotra, D., Troge, J., Lese-Martin, C., Walsh, T., et al. (2007). Strong association of de novo copy number mutations with autism. Science, 316, 445–449.PubMedGoogle Scholar
  97. Shao, Y., Cuccaro, M. L., Hauser, E. R., Raiford, K. L., Menold, M. M., Wolpert, C. M., et al. (2003). Fine mapping of autistic disorder to chromosome 15q11-q13 by use of phenotypic subtypes. American Journal of Medical Genetics, 72, 539–548.Google Scholar
  98. SLI Consortium. (2002). A genomewide scan identifies two novel loci involved in specific language impairment. American Journal of Human Genetics, 70, 384–398.Google Scholar
  99. SLI Consortium. (2004). Highly significant linkage to the SLI1 locus in an expanded sample of individuals affected by specific language impairment. American Journal of Human Genetics, 74, 1225–1238.Google Scholar
  100. Smith, S. D. (2007). Genes, language development, and language disorders. Mental Retardation and Developmental Disabilities Research Reviews, 13, 96–105.PubMedGoogle Scholar
  101. Sokol, D. K., Chen, D., Farlow, M. R., Dunn, D. W., Maloney, B., Zimmer, J. A., et al. (2006). High levels of Alzheimer beta-amyloid precursor protein (APP) in children with severely autistic behavior and aggression. Journal of Child Neurology, 21, 444–449.PubMedGoogle Scholar
  102. Sokol, D. K., & Edwards-Brown, M. (2004). Neuroimaging in autistic spectrum disorder (ASD). Journal of Neuroimaging, 14, 8–15.PubMedGoogle Scholar
  103. Solomon, E., Berg, L., & Martin, D. W. (2008). Biology (8th ed.). San Francisco: BrooksCole.Google Scholar
  104. Sparks, B. F., Friedman, S. D., Shaw, D. W., Aylward, E. H., Echelard, D., Artru, A. A., et al. (2002). Brain structural abnormalities in young children with autism spectrum disorder. Neurology, 59, 184–192.PubMedGoogle Scholar
  105. Steffenburg, S., Gillberg, C., Hellgren, L., Andersson, L., Gillberg, I. C., Jakobsson, G., et al. (1989). A twin study of autism in Denmark, Finland, Iceland, Norway and Sweden. Journal Child Psychology &Psychiatry, 30, 405–416.Google Scholar
  106. Stothard, S. E., Snowling, M. J., Bishop, D. V., Chipchase, B. B., & Kaplan, C. A. (1998). Language-impaired preschoolers: A follow-up into adolescence. Journal of Speech, Language, and Hearing Research, 41, 407–418.PubMedGoogle Scholar
  107. Strauss, K. A., Puffenberger, E. G., Huentelman, M. J., Gottlieb, S., Dobrin, S. E., Parod, J. M., et al. (2006). Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. New England Journal of Medicine, 354, 1370–1377.PubMedGoogle Scholar
  108. Sykes, N. H., & Lamb, J. A. (2007). Autism: The quest for the genes. Expert Reviews in Molecular Medicine, 9, 1–15.PubMedGoogle Scholar
  109. Szatmari, P., Paterson, A. D., Zwaigenbaum, L., Roberts, W., Brian, J., Liu, X. Q., et al. (2007). Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nature Genetics, 39, 319–328.PubMedGoogle Scholar
  110. Tabor, H. K., & Cho, M. K. (2007). Ethical implications of array comparative genomic hybridization in complex phenotypes: Points to consider in research. Genetics in Medicine, 9, 626–631.PubMedGoogle Scholar
  111. Tomblin, J. B., Records, N. L., Buckwalter, P., Zhang, X., Smith, E., & O’Brien, M. (1997). Prevalence of specific language impairment in kindergarten children. Journal of Speech, Language and Hearing Research, 40, 1245–1260.Google Scholar
  112. Veenstra-VanderWeele, J., & Cook, E. H., Jr. (2004). Molecular genetics of autism spectrum disorder. Molecular Psychiatry, 9, 819–832.PubMedGoogle Scholar
  113. Vincent, J. B., Petek, E., Thevarkunnel, S., Kolozsvari, D., Cheung, J., Patel, M., et al. (2002). The RAY1/ST7 tumor-suppressor locus on chromosome 7q31 represents a complex multi-transcript system. Genomics, 80, 283–294.PubMedGoogle Scholar
  114. Volpe, J. J. (2001). Neurology of the newborn (4th ed.). Philadelphia: WB Saunders.Google Scholar
  115. Vorstman, J. A., Staal, W. G., van Daalen, E., van Engeland, H., Hochstenbach, P. F., & Franke, L. (2006). Identification of novel autism candidate regions through analysis of reported cytogenetic abnormalities associated with autism. Molecular Psychiatry, 11(1), 18–28.Google Scholar
  116. Wassink, T. H., Brzustowicz, L. M., Bartlett, C. W., & Szatmari, P. (2004). The search for autism disease genes. Mental Retardation Developmental Disabilities Research Review, 10, 272–283.Google Scholar
  117. Wassink, T. H., Piven, J., Vieland, V. J., Huang, J., Swiderski, R. E., Pietila, J., et al. (2001). Evidence supporting WNT2 as an autism susceptibility gene. American Journal of Medical Genetics, 105, 406–413.PubMedGoogle Scholar
  118. Weiss, L. A., Arking, D. E., Daly, M. J., & Chakravarti, A. (2009). A genome-wide linkage and association scan reveals novel loci for autism. Nature, 461, 802–808.PubMedGoogle Scholar
  119. Westmark, C. J., & Malter, J. S. (2007). FMRP mediates mGluR5-dependent translation of amyloid precursor protein. Public Library of Science Biology, 5, e52.Google Scholar
  120. Yan, D., Oliveira, G., Coutinho, A., Yang, C., Feng, J., Katz, C., et al. (2005). Analysis of the neuroligin 3 and 4 genes in autism and other neuropsychiatric patients. Molecular Psychiatry, 10, 329–332.PubMedGoogle Scholar
  121. Zhang, H., Liu, X., Zhang, C., Mundo, E., Macciardi, F., Grayson, D. R., et al. (2002). Reelin gene alleles and susceptibility to autism spectrum disorders. Molecular Psychiatry, 7, 1012–1017.PubMedGoogle Scholar
  122. Zoghbi, H. Y. (2003). Postnatal neurodevelopmental disorders: Meeting at the synapse? Science, 302, 826–830.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of NeurologyRiley Hospital for Children, Indiana University School of MedicineIndianapolisUSA
  2. 2.Department of PsychiatryPsychiatry Research Institute, Indiana University School of MedicineIndianapolisUSA

Personalised recommendations