Graphs, Part II: More Advanced Notions

Chapter
Part of the Universitext book series (UTX)

Abstract

In this section, we take a closer look at the structure of cycles in a finite graph G. It turns out that there is a dual notion to that of a cycle, the notion of a cocycle.

Keywords

Transportation Resid Stein Alan Betti 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Claude Berge. Graphs and Hypergraphs. Amsterdam: Elsevier North-Holland, first edition, 1973.MATHGoogle Scholar
  2. 2.
    Marcel Berger. Géométrie 1. Nathan, 1990. English edition: Geometry 1, Universitext, New York: Springer Verlag.Google Scholar
  3. 3.
    Norman Biggs. Algebraic Graph Theory, volume 67 of Cambridge Tracts in Mathematics. Cambridge, UK: Cambridge University Press, first edition, 1974.MATHGoogle Scholar
  4. 4.
    Béla Bollobas. Modern Graph Theory. GTM No. 184. New York: Springer Verlag, first edition, 1998.MATHGoogle Scholar
  5. 5.
    J. Cameron, Peter. Combinatorics: Topics, Techniques, Algorithms. Cambridge, UK: Cambridge University Press, first edition, 1994.MATHGoogle Scholar
  6. 6.
    Fan R. K. Chung. Spectral Graph Theory, vol. 92 of Regional Conference Series in Mathematics. Providence, RI: AMS, first edition, 1997.Google Scholar
  7. 7.
    H. Cormen, Thomas, E. Leiserson, Charles, L. Rivest, Ronald, and Clifford Stein. Introduction to Algorithms. Cambridge, MA: MIT Press, second edition, 2001.MATHGoogle Scholar
  8. 8.
    Peter Cromwell. Polyhedra. Cambridge, UK: Cambridge University Press, first edition, 1994.Google Scholar
  9. 9.
    Reinhard Diestel. Graph Theory. GTM No. 173. New York: Springer Verlag, third edition, 2005.Google Scholar
  10. 10.
    Jean Gallier. What’s so Special about Kruskal’s Theorem and the Ordinal Γ0? Annals of Pure and Applied Logic, 53:199–260, 1991.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Jean H. Gallier. Geometric Methods and Applications, for Computer Science and Engineering. TAM, Vol. 38. New York: Springer, first edition, 2000.Google Scholar
  12. 12.
    Chris Godsil and Gordon Royle. Algebraic Graph Theory. GTM No. 207. New York: Springer Verlag, first edition, 2001.Google Scholar
  13. 13.
    Jonathan L. Gross, and Thomas W. Tucker. Topological Graph Theory. New York: Dover, first edition, 2001.MATHGoogle Scholar
  14. 14.
    Victor Guillemin and Alan Pollack. Differential Topology. Englewood Cliffs, NJ: Prentice Hall, first edition, 1974.MATHGoogle Scholar
  15. 15.
    Frank Harary. Graph Theory. Reading, MA: Addison Wesley, first edition, 1971.Google Scholar
  16. 16.
    Jon Kleinberg and Eva Tardos. Algorithm Design. Reading, MA: Addison Wesley, first edition, 2006.Google Scholar
  17. 17.
    James R. Munkres. Elements of Algebraic Topology. Reading, MA: Addison-Wesley, first edition, 1984.Google Scholar
  18. 18.
    Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization. Algorithms and Complexity.New York: Dover, first edition, 1998.MATHGoogle Scholar
  19. 19.
    N. Robertson, D. Sanders, P.D. Seymour and R. Thomas. The four-color theorem. J. Combin. Theory B, 70:2–44, 1997.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Michel Sakarovitch. Optimisation Combinatoire, Méthodes mathématiques et algorithmiques. Graphes et Programmation Linéaire. Paris: Hermann, first edition, 1984.MATHGoogle Scholar
  21. 21.
    Michel Sakarovitch. Optimisation Combinatoire, Méthodes mathématiques et algorithmiques. Programmation Discréte. Paris: Hermann, first edition, 1984.MATHGoogle Scholar
  22. 22.
    Herbert S. Wilf. Algorithms and Complexity. Wellesley, MA: A K Peters, second edition, 2002.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Computer and Information ScienceUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations