Semisupervised Dynamic Fuzzy K-Nearest Neighbors



This chapter presents a semi-supervised dynamic classification method to deal with the problem of diagnosis of industrial evolving systems. Indeed, when a functioning mode evolves, the system characteristics change and the observations, i.e. the patterns representing observations in the feature space, obtained on the system change too. Thus, each class membership function must be adapted to take into account these temporal changes and to keep representative patterns only. This requires an adaptive method with a mechanism for adjusting its parameters over time. The developed approach is named Semi-Supervised Dynamic Fuzzy K-Nearest Neighbors (SS-DFKNN) and comprises three phases: a detection phase to detect and confirm classes evolutions, an adaptation phase realized incrementally to update the evolved classes parameters and to create new classes if necessary and a validation phase to keep useful classes only. To illustrate this approach, the diagnosis of a welding system is realized to detect the weldings quality (good or bad), based on acoustic noises issued of weldings operations.


Feature Space Welding Quality Pattern Recognition Method Representative Pattern Delay Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Amadou-Boubacar, H., Lecoeuche, S., Maouche, S.: Self-adaptive kernel machine: Online clustering in RKHS. In: Proceedings of the IEEE IJCNN05. Montreal, Canada (2005)Google Scholar
  2. 2.
    Angelov, P.: A fuzzy controller with evolving structure. Information Sciences 161(1–2), 21–35 (2004)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Angelov, P., Filev, D., Kasabov, N.: Evolving Intelligent Systems—Methodology and Applications. John Wiley & Sons, New York (2010)CrossRefGoogle Scholar
  4. 4.
    Angstenberger, L.: Dynamic fuzzy pattern recognition. Ph.D. thesis, Fakultät für Wirtschaftswissenschaften der Rheinisch-Westfälischen Technischen Hochschule (2000). Aachen, GermanyGoogle Scholar
  5. 5.
    Beringer, J., Hüllermeier, E.: Efficient instance-based learning on data streams. Intelligent Data Analysis 11(6), 627–650 (2007)Google Scholar
  6. 6.
    Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer Academic/Plenum Publishers, USA (1981)MATHGoogle Scholar
  7. 7.
    Cohen, L., Avrahami, G., Last, M.: Incremental info-fuzzy algorithm for real time data mining of non-stationary data streams. In: Proceedings of the TDM Workshop. Brighton, UK (2004)Google Scholar
  8. 8.
    Cozman, F., Cohen, I., Cirelo, M.: Semi-supervised learning of mixture models. In: Proceedings of the 20th International Conference on Machine Learning (ICML). Washington DC, USA (2003)Google Scholar
  9. 9.
    Dubuisson, B.: Diagnostic et reconnaissance des formes. Tech. rep., Trait des Nouvelles Technolo-gies, srie Diagnostic et Maintenance, HERMES (1990)Google Scholar
  10. 10.
    Duda, R., Hart, P., Stork, D.: Pattern Classification—Second Edition. Wiley-Interscience (John Wiley & Sons), Southern Gate, Chichester, West Sussex, England (2000)Google Scholar
  11. 11.
    Frigui, H., Krishnapuram, R.: A robust algorithm for automatic extraction of an unknown number of clusters from noisy data. Pattern Recognition Letters 17, 1223–1232 (1996)MATHCrossRefGoogle Scholar
  12. 12.
    Frigui, H., Krishnapuram, R.: Clustering by competitive agglomeration. Pattern Recognition 307, 1109–1119 (1997)Google Scholar
  13. 13.
    Gabrys, B., Bargiela, A.: General fuzzy min–max neural network for clustering and classification. IEEE Transactions on Neural Networks 11(3), 769–783 (2000)CrossRefGoogle Scholar
  14. 14.
    Garcia, V.: Suivi d’objets d’intrt dans une sequence d’images: des points saillants aux mesures statistiques. Tech. rep., University of Nice (2009)Google Scholar
  15. 15.
    Gibb, W., Auslander, D., Griffin, J.: Adaptive classification of myocardial electrogram waveforms. IEEE Transactions on Biomedical Engineering 41, 804–808 (1994)CrossRefGoogle Scholar
  16. 16.
    Guedalia, I., London, M., Werman, M.: An on-line agglomerative clustering method for non-stationary data. Neural Computation 11(2), 521–540 (1999)CrossRefGoogle Scholar
  17. 17.
    Jain, A., Duin, R., Mao, J.: Statistical pattern recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(1), 4–37 (2000)CrossRefGoogle Scholar
  18. 18.
    Kasabov, N.: Evolving Connectionist Systems: The Knowledge Engineering Approach—Second Edition. Springer Verlag, London (2007)Google Scholar
  19. 19.
    Keller, J., Gray, M., Givens, J.: A fuzzy k-nn neighbor algorithm. IEEE Transactions on Systems, Man and Cybernetics 15(4), 580–585 (1985)Google Scholar
  20. 20.
    Kybic, J.: Incremental updating of nearest neighbor-based high-dimensional entropy estimation. In: Proceedings of the ICASSP 2006, pp. 804–807 (2006)Google Scholar
  21. 21.
    Law, Y., Zaniolo, C.: An adaptive nearest neighbor classification algorithm for data streams. In: Proceedings of the 9th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD 2005), pp. 108–120. Porto, Portugal (2005)Google Scholar
  22. 22.
    Lughofer, E.: Evolving Fuzzy Systems—Methodologies, Advanced Concepts and Applications. Springer, Berlin Heidelberg (2011)MATHCrossRefGoogle Scholar
  23. 23.
    Lughofer, E., Angelov, P.: Handling drifts and shifts in on-line data streams with evolving fuzzy systems. Applied Soft Computing 11(2), 2057–2068 (2011)CrossRefGoogle Scholar
  24. 24.
    Min, R.: A non-linear dimensionality reduction method for improving nearest neighbour classification. Ph.D. thesis, University of Toronto (2005). Toronto, CanadaGoogle Scholar
  25. 25.
    Nakhaeizadeh, G., Taylor, C., Kunisch, G.: Dynamic supervised learning. Some basic issues and application aspects. classification and knowledge organization, pp. 123–135. Springer Verlag, Berlin Heidelberg (1997)Google Scholar
  26. 26.
    Roncaglia, A., Elmi, I., Dori, L.: Adaptive K-NN for the detection of air pollutants with a sensor array. IEEE Sensor Journal 4(2), 248–256 (2004)CrossRefGoogle Scholar
  27. 27.
    Song, Y., Huang, J., Zhou, D.: Ik-NN: Informative k-nearest neighbor pattern classification. In: Proceedings of the PKKD 2007 conference, pp. 248–264 (2007)Google Scholar
  28. 28.
    Therrien, C.: Decision Estimation and Classification: An Introduction to Pattern Recognition and Related Topics. John Wiley & Sons, New York (1989)MATHGoogle Scholar
  29. 29.
    Vachkov, G.: Online classification of machine operation modes based on information compression and fuzzy similarity analysis. In: Proceedings of the IFSA-EUSFLAT 2009 conference, pp. 1456–1461. Lisbon, Portugal (2009)Google Scholar
  30. 30.
    Zhang, B., Srihari, S.: A fast algorithm for finding k-nearest neighbors with non-metric dissimilarity. In: Proceedings of the 8th International Workshop on Frontiers in Handwriting Recognition (IWFHR’02), pp. 13–19 (2002)Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.University of Reims Champagne-Ardenne, CReSTICReims CedexFrance
  2. 2.Computer Science and Automatic Control Lab, EMDouai-IAEcole des Mines de DouaiDouaiFrance

Personalised recommendations