Skip to main content

Interval Approach for Evolving Granular System Modeling

  • Chapter
  • First Online:
Learning in Non-Stationary Environments

Abstract

Physical systems change over time and usually produce considerable amount of nonstationary data. Evolving modeling of time-varying systems requires adaptive and flexible procedures to deal with heterogeneous data. Granular computing provides a rich framework for modeling time-varying systems using nonstationary granular data streams. This work considers interval granular objects to accommodate essential information from data streams and simplify complex real-world problems. We briefly discuss a new class of problems emerging in data stream mining where data may be either singular or granular. Particularly, we emphasize interval data and interval modeling framework. Interval-based evolving modeling (IBeM) approach recursively adapts both parameters and structure of rule-based models. IBeM uses ∪-closure granular structures to approximate functions. In general, approximand functions can be time series, decision boundaries between classes, control, or regression functions. Essentially, IBeM accesses data sequentially and discards previous examples; incoming data may trigger structural adaptation of models. The IBeM learning algorithm evolves and updates rules quickly to track system and environment changes. Experiments using heterogeneous streams of meteorological and financial data are performed to show the usefulness of the IBeM approach in actual scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kreinovich, V.: Interval computations as an important part of granular computing: an introduction. In: Pedrycz, W.; Skowron, A.; Kreinovich, V. (Eds.). Handbook of Granular Computing, pp. 1–31 (2008)

    Google Scholar 

  2. Pedrycz, W.: Evolvable fuzzy systems: some insights and challenges. Evolving Systems, 1 (2), pp. 73–82 (2010)

    Article  MathSciNet  Google Scholar 

  3. Bargiela A., Pedrycz, W.: Granulation of temporal data: a global view on time series. Int. Conf. of the North American Fuzzy Information Processing Society, pp. 191–196 (2003)

    Google Scholar 

  4. Angelov, P., Filev, D.: An approach to online identification of Takagi-Sugeno fuzzy models. IEEE Transactions on Systems, Man and Cybernetics — Part B: Cybernetics, 34 (1), pp. 484–498 (2004)

    Google Scholar 

  5. Leite, D., Gomide, F.: Evolving linguistic fuzzy models from data streams. To appear in: Trillas, E.; Bonissone, P.; Magdalena, L.; Kacprycz, J. (Eds.). Studies in Fuzziness and Soft Computing: A Homage to Abe Mamdani, Springer (2011)

    Google Scholar 

  6. Leite, D., Costa Jr., P., Gomide, F.: Evolving granular neural network for semi-supervised data stream classification. International Joint Conference on Neural Networks, pp. 1–8 (2010)

    Google Scholar 

  7. Leite, D.; Costa Jr., P.; Gomide, F.: Interval-based evolving modeling. IEEE Symposium Series on Computational Intelligence — Workshop ESDIS, pp. 1–8 (2009)

    Google Scholar 

  8. Leite, D.; Costa Jr., P.; Gomide, F: Granular approach for evolving system modeling. In: E. Hullermeier, R. Kruse, and F. Hoffmann (Eds.). Lecture Notes in Artificial Intelligence, 6178, pp. 340–349, Springer (2010)

    Google Scholar 

  9. Yao, Y. Y.: Interpreting concept learning in cognitive informatics and granular computing. IEEE Transactions on Systems, Man, and Cybernetics — Part B: Cybernetics, 39 (4), pp. 855–866 (2009)

    Google Scholar 

  10. Yao, Y. Y.: Human-inspired granular computing. In: J. T. Yao (Ed.), Novel Developments in Granular Computing: Applications for Advanced Human Reasoning and Soft Computing (2010)

    Google Scholar 

  11. Yao, Y. Y.: The art of granular computing. International Conference on Rough Sets and Emerging Intelligent Systems Paradigms, LNAI 4585, pp. 101–112 (2007)

    Article  Google Scholar 

  12. Zadeh, L. A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems, 90 (2), pp. 111–127 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pedrycz, W., Skowron, A., Kreinovich, V. (Eds.): Handbook of Granular Computing. Wiley-Interscience, Hoboken, New Jersey (2008)

    Google Scholar 

  14. Bargiela A., Pedrycz, W.: Granular Computing: An Introduction. Kluwer Academic Publishers - Boston, Dordrecht, London (2003)

    MATH  Google Scholar 

  15. Jaulin, L., Keiffer, M., Didrit, O., Walter, E.: Applied Interval Analysis. Springer-Verlag, London (2001)

    Book  MATH  Google Scholar 

  16. Shafer, J. L.: Analysis of Incomplete Multivariate Data. Chapman and Hall, London (1997)

    Book  Google Scholar 

  17. Little, R. J. A., Rubin, D. B.: Statistical Analysis with Missing Data. 2n d edition, Wiley-Interscience, Hoboken, New Jersey (2002)

    Google Scholar 

  18. Ozawa, S.; Pang, S.; Kasabov, N.: Incremental learning of chunk data for online pattern classification systems. IEEE Trans. on Neural Networks, 19 (6), pp. 1061–1074 (2008)

    Article  Google Scholar 

  19. Last, M.: Online classification of nonstationary data streams. Intelligent data analysis, vol. 6 (2), pp. 129–147 (2002)

    MathSciNet  MATH  Google Scholar 

  20. Yager, R.: Measures of specificity over continuous spaces under similarity relations. Fuzzy Sets and Systems, 159 (17), pp. 2193–2210 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hansen, E. R.; Walster, G. W.: Global Optimization using Interval Analysis. Marcel Dekker, 2nd edition, New York - Basel (2004)

    Google Scholar 

  22. Moore, R. E.: Interval Analysis. Prentice Hall, Englewood Cliffs, N.J. (1966)

    MATH  Google Scholar 

  23. Moore, R. E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia (1979)

    Book  MATH  Google Scholar 

  24. Kearfott, R. B.; Kreinovich, V.: Applications of Interval Computations. Kluwer Academic Publishers (1996)

    Google Scholar 

  25. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  26. Hickey, T., Ju, Q., van Emden, M. H.: Interval arithmetic: from principles to implementation. Journal of the ACM, textbf48 (5), pp. 1038–1068 (2001)

    Google Scholar 

  27. Moore, R. E., Kearfott, R. B., Cloud, M. J.: Introduction to Interval Analysis. SIAM, Philadelphia (2009)

    Book  MATH  Google Scholar 

  28. Petkovic, M. S., Petkovic, L, D.: Complex Interval Arithmetic and Its Applications. Wiley - VCH, Germany (1998)

    Google Scholar 

  29. Hahn, G. J., Meeker, W. Q.: Statistical Intervals: A Guide for Practitioners. Wiley, USA (1991)

    Book  MATH  Google Scholar 

  30. Moore, R. E.; Lodwick, W.: Interval analysis and fuzzy set theory. Fuzzy Sets and Systems, 135 (1), pp. 5–9 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Young, P. C.: Recursive Estimation and Time-Series Analysis: An Introduction. Springer-Verlag, Berlin, (1984)

    MATH  Google Scholar 

  32. Ballini, R., Mendonca, A., Gomide, F.: Evolving fuzzy modeling of sovereign bonds. The Journal of Financial Decision Making, special issue: The Fuzzy Logic in the Financial Uncertainty, 5 (2) (2009)

    Google Scholar 

  33. Astrom, K. J.; Wittenmark, B.: Adaptive Control. Addison-Wesley Longman Publishing Co., Inc., Boston, USA, 2 edition, (1994)

    Google Scholar 

  34. Johnson, C. R.: Lectures on Adaptive Parameter Estimation. Prentice-Hall, Inc., Upper Saddle River, USA (1988)

    MATH  Google Scholar 

Download references

Acknowledgements

The first author acknowledges CAPES, Brazilian Ministry of Education, for his fellowship. The second author thanks the Energy Company of Minas Gerais - CEMIG, Brazil, for grant P&D178. The last author is grateful to CNPq, the Brazilian National Research Council, for grant 304596/2009-4. The authors also thank the climate data sets from the ECA&D and EU-FP6 project Millennium and the economical data set from the Yahoo! Finance. Comments and suggestions of anonymous referees helped to improve the manuscript and are kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Leite .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Leite, D., Costa, P., Gomide, F. (2012). Interval Approach for Evolving Granular System Modeling. In: Sayed-Mouchaweh, M., Lughofer, E. (eds) Learning in Non-Stationary Environments. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8020-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8020-5_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8019-9

  • Online ISBN: 978-1-4419-8020-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics