Advertisement

An Introduction to Repair Techniques

  • Masashi Horiguchi
  • Kiyoo Itoh
Chapter
Part of the Integrated Circuits and Systems book series (ICIR)

With larger capacity, smaller feature size, and lower voltage operations of memory-rich CMOS LSIs (Fig. 1.1), various kinds of “errors (faults)” have been prominent and the repair techniques for them have become more important. The “errors” are categorized as hard/soft errors, timing/voltage margin errors, and speed-relevant errors. Hard/soft errors and timing/voltage margin errors, which occur in a chip, are prominent in a memory array because the array comprises memory cells having the smallest size and largest circuit count in the chip. In particular, coping with the margin errors is becoming increasingly important, and thus an emerging issue for low-voltage nanoscale LSIs, since the errors rapidly increase with device and voltage scaling. Increase in operating voltage is one of the best ways to tackle the issue. However, this approach is not acceptable due to intolerably increased power dissipation. Speed-relevant errors, which are prominent at a lower voltage operation, include speed-degradation errors of the chip itself and intolerably wide chip-to-chip speed-variation errors caused by the ever-larger interdie design-parameter variation. For the LSI industry in order to flourish and proliferate, solutions based on in-depth investigation of the errors are crucial.

Keywords

Code Word Margin Error Soft Error Memory Array SRAM Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    T. C. May and M. H. Woods, “Alpha-particle-induced soft errors in dynamic memories,” IEEE Trans. Electron Devices, vol. ED-26, pp. 2–9, Jan. 1979.CrossRefGoogle Scholar
  2. 2.
    K. Takeuchi, K. Shimohigashi, E. Takeda, E. Yamasaki, T. Toyabe and K. Itoh, “Alpha-particle-induced charge collection measurements for megabit DRAM cells,” IEEE Trans. Electron Devices, vol. 36, pp. 1644–1650, Sep. 1989.CrossRefGoogle Scholar
  3. 3.
    J. F. Ziegler, H. W. Curtis, H. P. Muhlfeld, C. J. Montrose, B. Chin, M. Nicewicz, C. A. Russell, W. Y. Wang, L. B. Freeman, P. Hosier, L. E. LaFave, J. L. Walsh, J. M. Orro, G. J. Unger, J. M. Ross, T. J. O’Gorman, B. Messina, T. D. Sullivan, A. J. Sykes, H. Yourke, T. A. Enger, V. Tolat, T. S. Scott, A. H. Taber, R. J. Sussman, W. A. Klein and C. W. Wahaus, “IBM experiments in soft fails in computer electronics (1978–1994),” IBM J. Res. Dev., vol. 40, pp. 3–18, Jan. 1996.CrossRefGoogle Scholar
  4. 4.
    K. Osada, K. Yamaguchi, Y. Saitoh and T. Kawahara, “SRAM immunity to cosmic-ray-induced multierrors based on analysis of an induced parasitic bipolar effect,” IEEE J. Solid-State Circuits, vol. 39, pp. 827–833, May 2004.CrossRefGoogle Scholar
  5. 5.
    E. Tammaru and J. B. Angell, “Redundancy for LSI yield enhancement,” IEEE J. Solid-State Circuits, vol. SC-2, pp. 172–182, Dec. 1967.CrossRefGoogle Scholar
  6. 6.
    A. Chen, “Redundancy in LSI memory array,” IEEE J. Solid-State Circuits, vol. SC-4, pp. 291–293, Oct. 1969.CrossRefGoogle Scholar
  7. 7.
    K. Itoh, M. Horiguchi, and H. Tanaka, Ultra-low voltage nano-scale memories, Springer, New York, 2007.Google Scholar
  8. 8.
    R. P. Cenker, D. G. Clemons, W. R. Huber, J. B. Petrizzi, F. J. Procyk and G. M. Trout, “A fault-tolerant 64K dynamic RAM,” ISSCC Dig. Tech. Papers, Feb. 1979, pp. 150–151.Google Scholar
  9. 9.
    R. R. DeSimone, N. M. Donofrio, B. L. Flur, R. H. Kruggel and H. H. Leung, “FET RAMs,” ISSCC Dig. Tech. Papers, Feb. 1979, pp. 154–155.Google Scholar
  10. 10.
    T. Mano, J. Yamada, J. Inoue and S. Nakajima, “Circuit techniques for a VLSI memory,” IEEE J. Solid-State Circuits, vol. SC-18, pp. 463–470, Oct. 1983.CrossRefGoogle Scholar
  11. 11.
    H. L. Kalter, C. H. Stapper, J. E. Barth Jr., J. DiLorenzo, C. E. Drake, J. A. Fifield, G. A. Kelley Jr., S. C. Lewis, W. B. van der Hoeven and J. A. Yankosky, “A 50-ns 16-Mb DRAM with a 10-ns data rate and on-chip ECC,” IEEE J. Solid-State Circuits, vol. 25, pp. 1118–1128, Oct. 1990.CrossRefGoogle Scholar
  12. 12.
    K. Arimoto, K. Fujishima, Y. Matsuda, M. Tsukude, T. Oishi, W. Wakamiya, S. Satoh, M. Yamada and T. Nakano, “A 60-ns 3.3-V-only 16-Mbit DRAM with multipurpose register,” IEEE J. Solid-State Circuits, vol. 24, pp. 1184–1190, Oct. 1989.CrossRefGoogle Scholar
  13. 13.
    R. Naseer and J. Draper, “Parallel double error correcting code design to mitigate multi-bit upsets in SRAMs,” Proc. ESSCIRC, Sep. 2008, pp. 222–225.Google Scholar
  14. 14.
    M. J. M. Pelgrom, A. C. J. Duinmaijer and A. P. G. Welbers, “Matching properties of MOS transistors,” IEEE J. Solid-State Circuits, vol. 24, pp. 1433–1440, Oct. 1989.CrossRefGoogle Scholar
  15. 15.
    M. Yamaoka, K. Osada, R. Tsuchiya, M. Horiuchi, S. Kimura and T. Kawahara, “Low power SRAM menu for SOC application using yin-yang-feedback memory cell technology,” Symp. VLSI Circuits Dig. Tech. Papers, June 2004, pp. 288–291.Google Scholar
  16. 16.
    Y. Tosaka, S. Satoh, T. Itakura, H. Ehara, T. Ueda, G. A. Woffinden and S. A. Wender, “Measurement and analysis of neutron-induced soft errors in sub-half-micron CMOS circuits,” IEEE Trans. Electron Devices, vol. 45, pp. 1453–1458, July 1998.CrossRefGoogle Scholar
  17. 17.
    Y. Komatsu, Y. Arima, T. Fujimoto, T. Yamashita and K. Ishibashi, “A soft-error hardened latch scheme for SoC in a 90nm technology and beyond,” Proc. CICC, Oct. 2004, pp. 329–332.Google Scholar
  18. 18.
    S. Das, D. Roberts, S. Lee, S. Pant, D. Blaauw, T. Austin, K. Flautner and T. Mudge, “A self-tuning DVS processor using delay-error detection and correction,” IEEE J. Solid-State Circuits, vol. 41, pp. 792–804, Apr. 2006.CrossRefGoogle Scholar
  19. 19.
    J. Tschanz, K. Bowman, S.-L. Lu, P. Aseron, M. Khellah, A. Raychowdhury, B. Geuskens, C. Tokunaga, C. Wilkerson, T. Karnik and V. De, “A 45nm resilient and adaptive microprocessor core for dynamic variation tolerance,” ISSCC Dig. Tech. Papers, Feb. 2010, pp. 282–283.Google Scholar
  20. 20.
    D. Bull, S. Das, K. Shivshankar, G. Dasika, K. Flautner and D. Blaauw, “A power-efficient 32b ARM ISA processor using timing-error detection and correction for transient-error tolerance and adaptation to PVT variation,” ISSCC Dig. Tech. Papers, Feb. 2010, pp. 284–285.Google Scholar
  21. 21.
    Kelin J. Kuhn, “Reducing variation in advanced logic technologies: approaches to process and design for manufacturability of nanoscale CMOS,” IEDM Proc., pp. 471–474, Dec. 2007.Google Scholar
  22. 22.
    Shih-Wei Sun and Paul G. Y. Tsui, “Limitation of CMOS supply-voltage scaling by MOSFET threshold-voltage variation,” IEEE J. Solid-State Circuits, vol. 30, pp. 947–949, Aug. 1995.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Renesas Electronics CorporationTokyoJapan
  2. 2.Central Research LaboratoryHitachi Ltd.TokyoJapan

Personalised recommendations