Advertisement

RF Signals

  • Ilir Progri
Chapter

Abstract

RF signals offers the best overview of the best practices and innovative techniques in the art and science of RF signals design, signal structure, signal interpretation (which includes propagation, signal density, and absorption models) over the last 20 years in the literature of RF signals [1–144]. This is by all means not a small task considering the fact that the International Telecommunications Union (ITU) Spectrum Monitoring handbook is suggested as a more appropriate reference and structure for discussion of geolocation signals and because the concepts and outdoor principles are well covered in ITU Spectrum Monitoring handbook [11, 12]. It covers all insight aspects including theoretical analysis, RF signals, signal techniques, key block diagrams, and practical principle signal interpretations in the frequency band from 100 MHz to 66 GHz. Dr. Progri reveals the research and development process by demonstrating how to understand and explain a good number of RF signals such as those used in wireless networks, mobile phones (or cellular networks), indoor geolocation systems, amplitude modulation (AM) and frequency modulation (FM) radio, two-way radio, satellite radio, TV broadcasting, satellite TV broadcasting, digital video broadcasting (DVB), Global Navigation Satellite Systems (GNSS), etc. from basic diagrams to be utilized to the principle simulation examples and make recommendations for the future final products of geolocation of RF signals (GRFS) [1–144]. We are going to discuss all these signals here except indoor geolocation systems signals, which are discussed in a separate publication on Indoor Geolocation Systems: Theory and Applications, which will be published soon.

Keywords

Global Navigation Satellite System Global Navigation Satellite System Federal Communication Commission Signal Design Time Division Duplex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Progri, I., An assessment of indoor geolocation systems, Ph.D. Dissertation, Worcester Polytechnic Institute, May 2003.Google Scholar
  2. 2.
    Arfken, G.B., and Weber, H.J., Mathematical Methods for Physicists, San Diego: Academic Press, 1995.Google Scholar
  3. 3.
    Davies, N., Europe a History, New York: Oxford University Press, 1996.Google Scholar
  4. 4.
    Butterfield, H., The Origins of Modern Science, 1300–1800. London: Routledge, 1947.Google Scholar
  5. 5.
    Nebeker, F., September and October in EE history, IEEE Inst., vol. 25, p. 9, 2001.Google Scholar
  6. 6.
    Parkinson, B., Gromov, K., Stansell, T., and Beard, R., A history of satellite navigation, in Proc. ION-AM, pp. 17–65, Colorado Springs, June 1995.Google Scholar
  7. 7.
    Parkinson, B.W., Spilker, J.J., Axelrad, P., and Enge, P., Global Positioning System: Theory and Applications, vols. 1 and 2, Washington: AIAA, 1996.Google Scholar
  8. 8.
    Parkinson B., and Gilbert, S.W., NAVSTAR: global positioning system – ten years later, IEEE, vol. 71, pp. 1177–1186, 1983.CrossRefGoogle Scholar
  9. 9.
    Parkinson, B.W., Spilker, J.J., Jr., Axelrad, P., and Enge, P., The Global Positioning System-Theory and Applications, Washington: American Institute of Aeronautics and Astronautics (vol. 1, chap. 2, Overview of GPS operation and design), 1996.Google Scholar
  10. 10.
    Misra, P., and Enge, P., Global Positioning System – Signals Measurements and Performance, Lincoln: Ganga-Jamuna Press, 2001.Google Scholar
  11. 11.
    International Telecommunications Union, Spectrum Monitoring Handbook, 2002 Edition. http://www.itu.int/publ/R-HDB-23/en
  12. 12.
    International Telecommunications Union, Supplement to Handbook on Spectrum Monitoring, 2008 Edition. http://www.itu.int/publ/R-HDB-53/en
  13. 13.
    Agnes, E.M., (Editor), Websters New World Dictionary of the American Language. College Edition, Cleveland: Webster’s New World, Aug., 1998.Google Scholar
  14. 14.
    Codara, L.C., Smart Antennas, Boca Raton: CRC Press, 2004.Google Scholar
  15. 15.
    Stapleton, S.P., and Costescu, F.C., An adaptive predistorter for a power amplifier based on adjacent channel emissions [mobile communications], IEEE Trans. Veh. Tech., vol. 41, no. 1, pp. 49–56, 1992.CrossRefGoogle Scholar
  16. 16.
    Belkerdid, M.A., Mears, T.J., and Weeter, H.T., UHF SATCOM adjacent channel emissions and modem implementation loss: predictions/measurements for the linear phase SBPSK modulation waveform family, in Proc. MILCOM, vol. 3, pp. 1970–1976, October 2005.Google Scholar
  17. 17.
    W-CDMA/HSPA Online User’s Guide E1963A, E6703E. Spectrum Emission Mask Measurement Description, Agilent Technologies, January 2009. http://wireless.agilent.com/rfcomms/refdocs/wcdma/wcdma_meas_spec_em_mask_desc.php
  18. 18.
    Proakis, J.G., Digital Communications, 4th ed., Boston: McGraw-Hill, 2001.Google Scholar
  19. 19.
    Monmoiner, M., Privacy and Technologies of Identity a Cross-Disciplinary Conversation (book chapter 5 “Geolocation and location privacy: the ‘inside’ story on geospatial tracking”), Berlin: Springer, December 2006.Google Scholar
  20. 20.
    Boettcher, P.W., and Shaw, G.A., Lecture Notes in Computer Science (book chapter on “Energy-constrained collaborative processing for target detection, tracking, and geolocation”), Berlin: Springer, January 2003.Google Scholar
  21. 21.
    Nerguizian, C., Despins, C., and Affès, S., Lecture Notes in Computer Science (book chapter on “Indoor geolocation with received signal strength fingerprinting technique and neural networks”), Berlin: Springer, July 2004.Google Scholar
  22. 22.
    Sahi, P., The Springer International Series in Engineering and Computer Science: (book chapter 2 on “Geolocation on cellular networks”), Netherlands: Springer, April 2006.Google Scholar
  23. 23.
    Harris, M.P., Daunt, F., Newell, M. Phillips, R.A., and Wanless, S., Wintering areas of adult Atlantic puffins Fratercula arctica from a North Sea colony as revealed by geolocation technology, Berlin: Springer, December 2009.Google Scholar
  24. 24.
    Shaffer, S.A., Tremblay, Y., Awkerman, J.A., Henry, R.W., Teo, S.L.H., Anderson, D.J., Croll, D.A., Block, B.A., and Costa, D.P., Comparison of light- and SST-based geolocation with satellite telemetry in free-ranging albatrosses, Berlin: Springer, vol. 147, no. 4, August 2005.Google Scholar
  25. 25.
    Bassiouni, M., and Cui, W., The Springer International Series in Engineering and Computer Science (book chapter 7 on “Enhancing terminal coverage and fault recovery in configurable cellular networks using geolocation services”), Netherlands: Springer, vol. 4217/2006, pp. 231–254, April 2006.Google Scholar
  26. 26.
    Ki, Y.M., Kim, J.W., Kim, S.R., and Kim, D.K. (book chapter on “Modified RWGH and positive noise mitigation schemes for TOA geolocation in indoor multi-hop wireless networks”), Lecture Notes in Computer Science, Netherlands: Springer, vol. 4217/2006, pp. 231–254, April 2006.Google Scholar
  27. 27.
    Hunter, E., Aldridge, J.N., Metcalfe, J.D., and Arnold, G.P., Geolocation of free-ranging fish on the European continental shelf as determined from environmental variables, J. Mar. Biol., vol. 142, no. 3, pp. 601–609, 2004. Google Scholar
  28. 28.
    Thygesen, U.H., and Nielsen, A., Reviews: Methods and Technologies in Fish Biology and Fisheries Tagging and Tracking of Marine Animals with Electronic Devices (book chapter on “Lessons from a prototype geolocation problem”), Netherlands: Springer, vol. 9, pp. 257–276, June 2009.Google Scholar
  29. 29.
    Liu, X., Ma, H., and Sun, W., Lecture Notes in Computer Science: Advances in Machine Vision, Image Processing, and Pattern Analysis (book chapter on “Study on the geolocation algorithm of space-borne SAR Image”), Berlin: Springer, pp. 270–280, August 2006.Google Scholar
  30. 30.
    Green, J.A., Wilson, R.P., Boyd, I.L., Woakes, A.J., Green, C.J., and Butler, P.J., Tracking macaroni penguins during long foraging trips using “behavioural geolocation,” J. Polar Biol., vol. 32, no. 4, pp. 645–653, 2009.CrossRefGoogle Scholar
  31. 31.
    Mielke, C., and Chen, H., Lecture Notes in Computer Science, Intelligence and Security Informatics: Intelligence and Security Informatics (book chapter on “Mapping dark web geolocation”), Berlin: Springer, pp. 97–107, November 2008.Google Scholar
  32. 32.
    Kikiras, P., and Drakoulis, D., An integrated approach for the estimation of mobile subscriber geolocation, J. Wireless Pers. Commun., vol. 30, no. 2–4, pp. 217–231, 2004.CrossRefGoogle Scholar
  33. 33.
    Mielke, C., and Chen, H., Ultra-Wideband, Short-Pulse Electromagnetics 5 (book chapter on “Experimental results from an ultra wideband precision geolocation system”), Berlin: Springer, pp. 97–107, 2002.Google Scholar
  34. 34.
    Luthcke, S.B., Carabajal, C.C., Rowlands, D.D., and Pavlis, D.E., Improvements in spaceborne laser altimeter data geolocation, Surv. Geophys., vol. 22, no. 5–6, 549–559, 2001. CrossRefGoogle Scholar
  35. 35.
    Hunter, E., Metcalfe, J.D., Holford, B.H., and Arnold, G.P., Geolocation of free-ranging fish on the European continental shelf as determined from environmental variables II. Reconstruction of plaice ground tracks, J. Mar. Biol., vol. 144, no. 4, pp. 787–798, 2004. CrossRefGoogle Scholar
  36. 36.
    Bargshady, N., Nayef, A., Alsindi, N.A., and Pahlavan, K., Lecture Notes in Computer Science: Mobile Entity Localization and Tracking in GPS-less Environments (book chapter on “Performance of TOA- and RSS-based indoor geolocation for cooperative robotic applications”), Berlin: Springer, pp. 255–266, September 2009.Google Scholar
  37. 37.
    Pahlavan, K., Li, X., Ylianttila, M., Chana, R., and Latva-aho, M., Lecture Notes in Computer Science: Mobile and Wireless Communications Networks (book chapter on “An overview of wireless indoor geolocation techniques and systems”), Berlin: Springer, pp. 1–13, January 2000.Google Scholar
  38. 38.
    Gueye, B., Uhlig, S., Ziviani, A., and Fdida, S., Lecture Notes in Computer Science, Networking 2006. Networking Technologies, Services, and Protocols; Performance of Computer and Communication Networks; Mobile and Wireless Communications Systems (book chapter on “Leveraging buffering delay estimation for geolocation of internet hosts”), Berlin: Springer, pp. 319–330, April 2006.Google Scholar
  39. 39.
    Gueye, B., Uhlig, S., Ziviani, A., and Fdida, S., Reviews: Methods and Technologies in Fish Biology and Fisheries, Tagging and Tracking of Marine Animals with Electronic Devices (book chapter on “Summary report of a workshop on geolocation methods for marine animals”), Netherlands: Springer, pp. 342–363, June 2009.Google Scholar
  40. 40.
    Palaniswami, M., Sundaram, B., Jayavardhana, R., and Shilton, A., Informatics in Control, Automation and Robotics II (book chapter on “Target localization using machine learning”), Netherlands: Springer, pp. 27–33, June 2007.Google Scholar
  41. 41.
    Rowlands, D.D., Lemoine, F. G., Chinn, D. S., and Luthcke, S.B., A simulation study of multi-beam altimetry for lunar reconnaissance orbiter and other planetary missions, J. Geod., vol. 83, no. 8, pp. 709–721, 2008. CrossRefGoogle Scholar
  42. 42.
    Choi, W.-J., and Tekinay, S., Location-based service provisioning for next generation wireless networks, Int. J. Wireless Inform. Networks, vol. 10, no. 3, pp. 127–139, 2003. CrossRefGoogle Scholar
  43. 43.
    Thygesen, U.H., Pedersen, M.W., and Madsen, H., Reviews: Methods and Technologies in Fish Biology and Fisheries, Tagging and Tracking of Marine Animals with Electronic Devices (book chapter 114 on “Geolocating fish using hidden Markov models and data storage tags”), Netherlands: Springer, pp. 277–293, June 2009.Google Scholar
  44. 44.
    Lee, S.C., Lee, W.R., and You, K.H., Communications in Computer and Information Science, Control and Automation (book chapter on “TDoA based UAV localization using dual-EKF algorithm”), Berlin: Springer, pp. 47–54, 2009. Google Scholar
  45. 45.
    Tanner, S., Stein, C., and Graves, S.J., Scientific Data Mining and Knowledge Discovery (book chapter on “On-board data mining”), Berlin: Springer, pp. 345–376, 2009. Google Scholar
  46. 46.
    Jeske, D.R., Statistics for Industry and Technology, Advances in Mathematical and Statistical Modeling (book chapter on “Jackknife bias correction of a clock offset estimator”), Boston: Birkhäuser, pp. 245–254, 2008. Google Scholar
  47. 47.
    Arslan, H., and Celebi, H., Cognitive Radio, Software Defined Radio, and Adaptive Wireless Systems (book chapter 10 on “Location information management systems for cognitive wireless networks”), Netherlands: Springer, pp. 291–323, 2007. Google Scholar
  48. 48.
    Drent, R.H., Fox, A.D., and Stahl, J., Travelling to breed, J. Ornithol., vol. 147, no. 2, pp. 185–188, 2006. CrossRefGoogle Scholar
  49. 49.
    Riboni, D., Pareschi, L., and Bettini, C., Lecture Notes in Computer Science, Privacy in Location-Based Applications (book chapter 10 on “Privacy in georeferenced context-aware services: a survey”), Berlin: Springer, pp. 151–172, 2009. Google Scholar
  50. 50.
    Xiang-zheng, D., Jin-yan, Z., Ji-yuan, L., and Da-fang, Z., The global rainforest mapping project JERS-1: a paradigm of international collaboration for monitoring land cover change, J. Geogr. Sci., vol. 12, no. 1, pp. 185–188, 2002. CrossRefGoogle Scholar
  51. 51.
    Huang, L., Yamane, H., Matsuura, K., and Sezaki, K., Advances in Information Security, Secure Localization and Time Synchronization for Wireless Sensor and Ad Hoc Networks (book chapter on “Location privacy in wireless LAN”), Berlin: Springer, pp. 299–322, 2007. Google Scholar
  52. 52.
    Zhou, R., and Schneider, G., Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, Mobile Wireless Middleware, Operating Systems, and Applications (book chapter on “Location-based botany guide: a prototype of web-based tracking and guiding”), Berlin: Springer, pp. 72–86, 2007. Google Scholar
  53. 53.
    DongChen, E., Shen, Q., Xu, Y., and Chen, G., High-accuracy topographical information extraction based on fusion of ASTER stereo-data and ICESat/GLAS data in Antarctica, Sci. China Ser. D Earth Sci., vol. 52, no. 5, pp. 714–722, 2009. CrossRefGoogle Scholar
  54. 54.
    Taheri, J., and Zomaya, A.Y., A combined genetic-neural algorithm for mobility management, JMMA, vol. 6, no. 3, pp. 714–722, 2007. MathSciNetGoogle Scholar
  55. 55.
    Yang, J., Zhang, C., Li, X., Huang, Y., Fu, S., and Acevedo, M.F., Integration of wireless sensor networks in environmental monitoring cyber infrastructure, Wireless Networks, vol. 6, no. 3, pp. 714–722, 2007. Google Scholar
  56. 56.
    Villafuerte, F.L., and Schiller, J., Lecture Notes in Computer Science, Ad-Hoc, Mobile and Wireless Networks (book chapter on “An ad-hoc algorithm to estimate distances in wireless sensor networks”), Berlin: Springer, pp. 162–175, 2008. Google Scholar
  57. 57.
    Gardiner, K., Yin, J., and Carswell, J.D., Lecture Notes in Computer Science, Web and Wireless Geographical Information Systems (book chapter on “EgoViz – a mobile based spatial interaction system”), Berlin: Springer, pp. 135–152, 2009. Google Scholar
  58. 58.
    Yang, F., Zhang, Z., and Chen, Y., Maximum-likelihood estimator for coarse carrier frequency offset estimation in OFDM systems, J. Wireless Pers. Commun., vol. 49, no. 1, pp. 55–66, 2009. CrossRefMathSciNetGoogle Scholar
  59. 59.
    Musick, S., Foundations and Applications of Sensor Management (book chapter 11 on “Defense applications”), Berlin: Springer, pp. 257–268, 2008. Google Scholar
  60. 60.
    Frattasi, S., Fitzek, P.H.P., and Prasad, R., IFIP International Federation for Information Processing, Intelligence in Communication Systems (book chapter on “A look into the 4G crystal ball”), Berlin: Springer, pp. 281–290, 2005. Google Scholar
  61. 61.
    Dil, B., Dulman, S., and Havinga, P., Lecture Notes in Computer Science, Wireless Sensor Networks (book chapter on “Range-based localization in mobile sensor networks”), Berlin: Springer, pp. 164–178, 2006. Google Scholar
  62. 62.
    Shen, X., Mark, J.W., and Ye, J., Mobile location estimation in CDMA cellular networks by using fuzzy logic, J. Wireless Pers. Commun., vol. 22, no. 1, pp. 57–70, 2002. CrossRefGoogle Scholar
  63. 63.
    Mineno, H., Hida, K., Mizutani, M., Miyauchi, N., Kusunoki, K., Fukuda, A., and Mizuno, T., Lecture Notes in Computer Science, Knowledge-Based Intelligent Information and Engineering Systems (book chapter on “Position estimation for goods tracking system using mobile detectors”), Berlin: Springer, pp. 431–437, 2005. Google Scholar
  64. 64.
    Buschmann, C., Hellbrück, H., Fischer, S., Kröller, A., and Fekete, S., Lecture Notes in Computer Science, Wireless Sensor Networks (book chapter on “Radio propagation-aware distance estimation based on neighborhood comparison”), Berlin: Springer, pp. 325–340, 2007. Google Scholar
  65. 65.
    Li, J., Li, J., Guo, L., and Wang, P., Lecture Notes in Computer Science, Advanced Web and Network Technologies, and Applications (book chapter on “Power-efficient node localization algorithm in wireless sensor networks”), Berlin: Springer, pp. 420–430, 2006. Google Scholar
  66. 66.
    Muthukrishnan, K., and Hazas, M., Lecture Notes in Computer Science, Location and Context Awareness (book chapter on “Position estimation from UWB pseudorange and angle-of-arrival: a comparison of non-linear regression and Kalman filtering”), Berlin: Springer, pp. 222–239, 2009. Google Scholar
  67. 67.
    Kontkanen, P., Myllymäki, P., Roos, T., Tirri, H., Valtonen, K., and Wettig, H., Emerging Location Aware Broadband Wireless Ad Hoc Networks (book chapter on “Probabilistic methods for location estimation in wireless networks”), Berlin: Springer, pp. 173–188, 2005. Google Scholar
  68. 68.
    Doherty, P., and Rudol, P., Lecture Notes in Computer Science, AI 2007: Advances in Artificial Intelligence (book chapter on “A UAV search and rescue scenario with human body detection and geolocalization”), Berlin: Springer, pp. 1–13, 2007. Google Scholar
  69. 69.
    De la Cruz, A., Laneve, G., Cerra, D., Mielewczyk, M., Garcia, M., Santilli, G., Cadau, E., and Joyanes, G., Lecture Notes in Geoinformation and Cartography, Geomatics Solutions for Disaster Management (book chapter on “On the application of nighttime sensors for rapid detection of areas impacted by disasters”), Berlin: Springer, pp. 17–36, 2007. Google Scholar
  70. 70.
    Martínez-de-Dios, J.R., Merino, L., Ollero, A., Ribeiro, L.M., and Viegas, X., Springer Tracts in Advanced Robotics, Multiple Heterogeneous Unmanned Aerial Vehicles (book chapter on “Multi-UAV experiments: application to forest fires”), Berlin: Springer, pp. 207–228, 2007. Google Scholar
  71. 71.
    Sun, G., and Guo, W., A novel indoor geo-location method using MIMO array, J. Electron. (China), vol. 23, no. 6, pp. 810–813, 2003. CrossRefGoogle Scholar
  72. 72.
    Pahlavan, K., Li, X., Ylianttila, M., and Latva-aho, M., The Springer International Series in Engineering and Computer Science, Wireless Communication Technologies: New Multimedia Systems (book chapter on “Wireless data communications systems”), Berlin: Springer, pp. 201–214, 2000. Google Scholar
  73. 73.
    Merino, L., Caballero, F., Ferruz, J., Wiklund, J., Forssén, P.-E., and Ollero, A., Springer Tracts in Advanced Robotics, Multiple Heterogeneous Unmanned Aerial Vehicles (book chapter on “Multi-UAV cooperative perception techniques”), Berlin: Springer, pp. 67–110, 2007. Google Scholar
  74. 74.
    Sunay, M., The Springer International Series in Engineering and Computer Science, Next Generation Wireless Networks (book chapter on “Evaluation of location determination technologies towards satisfying the FCC E-911 Ruling”), Netherlands: Springer, pp. 157–192, 2002. Google Scholar
  75. 75.
    Yarlykov, M.S., and Yarlykova, S.M., Signal-detection and signal-processing algorithms for code-division multiple-access satellite mobile communications systems employed simultaneously with satellite radio navigation systems, J. Comm. Tech. Electron., vol. 51, no. 8, pp. 874–894, 2006. CrossRefGoogle Scholar
  76. 76.
    Amundson, I., Manish Kushwaha, M., and Koutsoukos, X.D., Lecture Notes in Computer Science, Mobile Entity Localization and Tracking in GPS-Less Environments (book chapter on “On the feasibility of determining angular separation in mobile wireless sensor networks”), Berlin: Springer, pp. 115–127, 2009. Google Scholar
  77. 77.
    Richton, B., Vannucci, G., and Wilkus, S., The Springer International Series in Engineering and Computer Science, Next Generation Wireless Networks (book chapter on “Assisted GPS for wireless phone location – technology and standards”), Netherlands: Springer, pp. 129–155, 2002. Google Scholar
  78. 78.
    Howard, A., and Tunstel, F., Frontiers of Geographic Information Technology (book chapter on “Using geospatial information for autonomous systems control”), Berlin: Springer, pp. 63–84, 2006. Google Scholar
  79. 79.
    Hoeher, P., and Schmeink, K., Lecture Notes in Electrical Engineering, Multi-Carrier Spread Spectrum 2007 (book chapter on “Joint navigation & communication based on interleave-division multiple access”), Netherlands: Springer, pp. 97–106, 2007. Google Scholar
  80. 80.
    Howard, A., and Tunstel, F., Lecture Notes in Computer Science, Algorithmic Aspects of Wireless Sensor Networks (book chapter on “Algorithms for location estimation based on RSSI Sampling”), Berlin: Springer, pp. 72–86, 2008. Google Scholar
  81. 81.
    Cianca, E., Sanctis, M.D., Araniti, G., Molinaro, A., Iera, A., Torrisi, M., and Ruggieri, M., Signals and Communication Technology, Satellite Communications and Navigation Systems (book chapter on “Integration of navigation and communication for location and context aware RRM”), Berlin: Springer, pp. 25–50, 2008. Google Scholar
  82. 82.
    Song, L., Adve, R., and Hatzinakos, D., Lecture Notes in Computer Science, Wireless Sensor Networks (book chapter on “Matrix pencil for positioning in wireless ad hoc sensor network”), Berlin: Springer, pp. 18–27, 2004. Google Scholar
  83. 83.
    Chen, Y., and Rapajic, P., Human respiration rate estimation using ultra-wideband distributed cognitive radar system, Institute of Automation, Chinese Academy of Sciences, co-published with Springer-Verlag GmbH, International Journal of Automation and Computing, vol. 4, no. 5, pp. 325–333, October 2008. Google Scholar
  84. 84.
    Hämäläinen, M., Saloranta, J., Mäkelä, J.-P., Oppermann, I., and Patana, T., Ultra-wideband signal impact on the performances of IEEE 802.11b and bluetooth networks, International Int. J Wireless Inform. Networks, vol. 10, no. 4, pp. 201–210, 2003. CrossRefGoogle Scholar
  85. 85.
    Guvenc, I., Sahinoglu, Z., Orlik, P., and Arslan, H., Searchback algorithms for TOA estimation in non-coherent low-rate IR-UWB systems, J. Wireless Pers. Commun., vol. 48, no. 4, pp. 585–603, 2009. CrossRefGoogle Scholar
  86. 86.
    Zeger, L.M., and Kobayashi, H., A simplified EM algorithm for detection of CPM signals in a fading multipath channel, J. Wireless Networks, vol. 8, no. 6, pp. 649–658, 2002. MATHCrossRefGoogle Scholar
  87. 87.
    Barber, B.D., Redding, J.D., McLain, T.W., Beard, R.W., and Taylor, C.N., Vision-based target geo-location using a fixed-wing miniature air vehicle, J. Intell. Robot. Syst., vol. 47, no. 4, pp. 361–382, 2006. CrossRefGoogle Scholar
  88. 88.
    Gezici, S., A survey on wireless position estimation, J. Wireless Pers. Commun., vol. 44, no. 3, pp. 263–282, 2008. CrossRefGoogle Scholar
  89. 89.
    Ye, L., Geng, Z., Xue, L., and Liu, Z., Lecture Notes in Computer Science, Computational Science and its Applications – ICCSA 2007 (book chapter on “A novel real time method of signal strength based indoor localization”), Berlin: Springer, pp. 678–688, 2007. Google Scholar
  90. 90.
    Guoqiang, M., Barş, F., and Anderson, D., Sensor Networks and Configuration (book chapter on “Localisation”), Berlin: Springer, pp. 281–315, 2007. Google Scholar
  91. 91.
    Khokhar, S., and Nilsson, A.A., Lecture Notes in Computer Science, Wireless Algorithms, Systems, and Applications (book chapter on “Introduction to mobile trajectory based services: a new direction in mobile location based services”), Berlin: Springer, pp. 398–407, 2009. Google Scholar
  92. 92.
    Zàruba, G.V., Huber, M., Kamangar, F.A., and Chlamtac, I., Indoor location tracking using RSSI readings from a single Wi-Fi access point, J. Wireless Networks, vol. 13, no. 2, pp. 221–235, 2007. CrossRefGoogle Scholar
  93. 93.
    Gu, Z., and Gunawan, E., Radiolocation in CDMA Cellular system based on joint angle and delay estimation, J. Wireless Pers. Commun., vol. 23, no. 3, pp. 297–309, 2002. CrossRefGoogle Scholar
  94. 94.
    Arslan, H., and Celebi, H., Cognitive Radio, Software Defined Radio, and Adaptive Wireless Systems (book chapter on “Software defined radio architectures for cognitive radios”), Netherlands: Springer, pp. 109–144, 2007. Google Scholar
  95. 95.
    Fontana, R.J., Ultra-Wideband, Short-Pulse Electromagnetics 5 (book chapter on “Recent applications of ultra wideband radar and communications systems”), Berlin: Springer, pp. 225–234, 2002. Google Scholar
  96. 96.
    Boryssenko, A.O., and Schaubert, D.H., Electromagnetics-related aspects of signaling and signal processing for UWB short range radios, J. VLSI Signal Process., vol. 43, no. 1, pp. 89–104, 2006. MATHCrossRefGoogle Scholar
  97. 97.
    Mazuelas, S., Lago, F.A., Fernandez, P., Bahillo, A., Blas, J., Lorenzo, R.M., and Abril, E.J., Ranking of TOA Measurements Based on the Estimate of the NLOS Propagation Contribution in a Wireless Location System, J. Wireless Pers. Commun., vol. 53, nr. 1, pp. 35–52, 2009. Google Scholar
  98. 98.
    Manodham, T., Loyola, L., and Miki, T., A novel wireless positioning system for seamless internet connectivity based on the WLAN infrastructure, J. Wireless Pers. Commun., vol. 44, no. 3, pp. 295–309, 2008. CrossRefGoogle Scholar
  99. 99.
    Frattasi, S., and Monti, M., Cognitive Wireless Networks (book chapter on “Cooperative mobile positioning in 4G wireless networks”), Netherlands: Springer, pp. 213–233, 2007. Google Scholar
  100. 100.
    Artieda, J., Sebastian, J.M., Campoy, P., Correa, J.F., Mondragón, I.F., Martínez, C., and Olivares, M., Visual 3-D SLAM from UAVs, J. Intell. Robot. Syst., vol. 55, no. 4–5, pp. 299–321, 2009. MATHCrossRefGoogle Scholar
  101. 101.
    Principles of Spread-Spectrum Communication Systems (book chapter on “Code-Division Multiple Access”), Berlin: Springer, pp. 293–386, 2005. Google Scholar
  102. 102.
    Webb, W., Broadband fixed wireless access as a key component of the future integrated communications environment, IEEE Com. Mag., vol. 39, no. 9, pp. 115–121, 2001.CrossRefGoogle Scholar
  103. 103.
    Danesh, M., Zuniga, J.-C., Concilio, F., Fixed low-frequency broadband wireless access radio systems, IEEE Com. Mag., vol. 39, no. 9, pp. 134–138, 2001.CrossRefGoogle Scholar
  104. 104.
    Izadpanah, H., A military-wave broadband wireless access technology demonstrator for the next-generation internet network reach extension, IEEE Com. Mag., vol. 39, no. 9, pp. 140–145, Sep. 2001.CrossRefGoogle Scholar
  105. 105.
    Heegard, C., Coffey, J.T., Gummadi, S., Murphy, P.A., Provencio, R., Rossin, E.J., Schrum, S., and Shoemake, M.B., High-performance wireless Ethernet, IEEE Com. Mag., vol. 39, no. 11, pp. 64–73, 2001.CrossRefGoogle Scholar
  106. 106.
    Karaguz, J., High-rate wireless personal area network, IEEE Com. Mag., vol. 39, no. 12, pp. 96–102, 2001.CrossRefGoogle Scholar
  107. 107.
    Smulders, P., Exploiting the 60 GHz band for local wireless multimedia access: prospects and future directions, IEEE Com. Mag., vol. 40, no. 1, pp. 140–147, 2002.CrossRefGoogle Scholar
  108. 108.
    Eklund, C., Marks, R.B., Stanwood, K.L., and Wang, S., IEEE standard 802.16: a technical overview of the WirelessMAN™ air interface for broadband wireless access, IEEE Com. Mag., vol. 40, no. 6, pp. 90–96, 2002.CrossRefGoogle Scholar
  109. 109.
    Callaway, E., Gorday, P., Hester, L., Gutierrez, J.A., Naeve, M., Heile, B., and Bahl, V., Home networking with IEEE 802.15.4: a developing standard for low-rate wireless personal area networks, IEEE Com. Mag., vol. 40, no. 8, pp. 70–77, 2002.CrossRefGoogle Scholar
  110. 110.
    Porcino, D., and Hirt, W., Ultra-wideband radio technology: potential and challenges ahead, IEEE Com. Mag., vol. 41, no. 7, pp. 66–74, 2003.CrossRefGoogle Scholar
  111. 111.
    Mahonen, P., Riihijarvi, J., Petrova, M., and Shelby, Z., Hop-by-hop toward future mobile broadband IP, IEEE Com. Mag., vol. 42, no. 3, pp. 138–146, 2004.CrossRefGoogle Scholar
  112. 112.
    Zheng, J., and Lee, M.J., Will IEEE 802.15.4 make ubiquitous networking a reality?: a discussion on a low power, low bit rate standard, IEEE Com. Mag., vol. 42, no. 6, pp. 140–146, 2004.CrossRefGoogle Scholar
  113. 113.
    Williams, C., Beach, M., Neirynick, D., Nix, A., Chen, K., Morris, K., Kitchener, D., Presser, M., Li, Y, and McLauchglin, S., Personal area technologies for internetworked services, IEEE Com. Mag., vol. 42, no. 12, pp. S15–S26, 2004.CrossRefGoogle Scholar
  114. 114.
    Ghosh, A., Wolter, D.R., Andrews, J.G., and Chen, R., Broadband wireless access with WiMax/802/16: current performance benchmarks and future potential, IEEE Com. Mag., vol. 43, no. 2, pp. 129–136, 2005.CrossRefGoogle Scholar
  115. 115.
    Tardy, I., and Grondalen, O., On the role of future high-frequency BFWA systems in broadband communication networks, IEEE Com. Mag., vol. 43, no. 2, pp. 138–144, 2005.CrossRefGoogle Scholar
  116. 116.
    Chan, S., Shared spectrum access for the DoD, IEEE Com. Mag., vol. 45, no. 6, pp. 58–66, 2007.CrossRefGoogle Scholar
  117. 117.
    Weerackody, V., and Gonzales, L., Mobile small aperture satellite terminals for military communications, IEEE Com. Mag., vol. 45, no. 10, pp. 70–75, 2007.CrossRefGoogle Scholar
  118. 118.
    Li, B., Yang, Q., Low, C.P., and Gwee, C.L., A survey on mobile WiMAX, IEEE Com. Mag., vol. 45, no. 12, pp. 70–75, 2007.CrossRefGoogle Scholar
  119. 119.
    Guiliano, R., Luglio, M., and Mazzenga, F., Interoperability between WiMAX and broadband mobile space networks, IEEE Com. Mag., vol. 46, no. 3, pp. 50–57, 2008.CrossRefGoogle Scholar
  120. 120.
    Cheng, L., Henty, B.E., Cooper, R., Stancil, D.C., and Bai, F., A measurement study of time-scaled 802.11a waveforms over the mobile-to-mobile vehicular channel at 5.9 GHz, IEEE Com. Mag., vol. 46, no. 5, pp. 84–91, 2008.CrossRefGoogle Scholar
  121. 121.
    Stotts, L., Seidel, S., Krout, T., and Kolodzy, P., MANET gateways: radio interoperability via the internet, not the radio, IEEE Com. Mag., vol. 46, no. 6, pp. 51–59, 2008.CrossRefGoogle Scholar
  122. 122.
    Greenspan, A., Klerer, M., Tomcik, J., Canchi, R., and Wilson, J., IEEE 802.20: mobile broadband wireless access for the twenty-first century, IEEE Com. Mag., vol. 46, no. 7, pp. 56–63, 2008.CrossRefGoogle Scholar
  123. 123.
    Etemad, K., Overview of mobile WiMAX technology and evolution, IEEE Com. Mag., vol. 46, no. 10, pp. 31–40, 2008.CrossRefGoogle Scholar
  124. 124.
    Wang, F., Chosh, A., Sankaran, C., Fleming, P.J., Hsieh, F., and Benes, S.J., Mobile WiMAX systems: performance and evolution, IEEE Com. Mag., vol. 46, no. 10, pp. 41–49, 2008.CrossRefGoogle Scholar
  125. 125.
    Yen, S.-P., Talwar, S., Lee, S.-C., and Kim, H., WiMAX femtocells: a perspective on network architecture, capacity, and coverage, IEEE Com. Mag., vol. 46, no. 10, pp. 58–65, 2008.CrossRefGoogle Scholar
  126. 126.
    Cox, D.C., Fundamental limitations on increasing data rate in wireless systems, IEEE Com. Mag., vol. 46, no. 12, pp. 16–17, 2008.CrossRefGoogle Scholar
  127. 127.
    Singh, H., Oh, J., Kweon, C.Y., Qin, X., Shao, H.-R., and Ngo, C., A 60 GHz wireless network for enabling uncompressed video communication, IEEE Com. Mag., vol. 46, no. 12, pp. 71–78, 2008.CrossRefGoogle Scholar
  128. 128.
    Gardikis, G., and Kourtis, A., Using DVB-S2 adaptive coding and modulation for provision of Satellite triple play services, IEEE Com. Mag., vol. 46, no. 12, pp. 128–135, 2008.CrossRefGoogle Scholar
  129. 129.
    Peters, S.W., and Hearth, R.W., Jr., The future of WiMAX: multihop relaying with IEEE 802.16j, IEEE Com. Mag., vol. 47, no. 1, pp. 104–111, 2009.CrossRefGoogle Scholar
  130. 130.
    Stevenson, C.R., Chouinard, G., Lei, Z., Hu, W., Shellhammer, S.J., and Caldwell, W., IEEE 802.22: the first cognitive radio wireless regional area network standard, IEEE Com. Mag., vol. 47, no. 1, pp. 130–138, 2009.CrossRefGoogle Scholar
  131. 131.
    Bazelon, C., Licensed or unlicensed: the economic considerations in incremental spectrum allocations, IEEE Com. Mag., vol. 47, no. 3, pp. 110–116, 2009.CrossRefGoogle Scholar
  132. 132.
    Astely, D., Dahlman, E., Furuskar, A., Jading, Y., Lindstrom, M., and Parkvall, S., LTE: the evolution of mobile broadband, IEEE Com. Mag., vol. 47, no. 4, pp. 44–51, 2009.CrossRefGoogle Scholar
  133. 133.
    Cai, L.X., Shen, X., and Mark, J.W., Efficient MAC protocol for ultra-wideband networks, IEEE Com. Mag., vol. 47, no. 6, pp. 179–185, 2009.CrossRefGoogle Scholar
  134. 134.
    National Geospatial and Intelligence Agency. http://www1.nga.mil/Pages/Default.aspx
  135. 135.
    Progri, I.F., Ortiz, W., Michalson, W.R., and Wang, J., The Performance and simulation of an OFDMA pseudolite indoor geolocation system, in Proc. ION-GNSS 2006, Fort Worth, pp. 3149–3162, September 2006.Google Scholar
  136. 136.
    Progri, I.F., Wireless-enabled GPS indoor geolocation system, in Proc. IEEE/ION-PLANS 2010, Palm Springs, pp. 526–538, May 2010.Google Scholar
  137. 137.
    Digital Video Broadcasting – Satellite – Second Generation (DVB-S2). http://en.wikipedia.org/wiki/DVB-S2
  138. 138.
    A COMPANION GUIDE TO DVB-S2. http://www.arctekhd.com/news/stories/DVBS-2_guide.pdf, © 2004 TANDBERG Television Ltd. All rights reserved.
  139. 139.
  140. 140.
  141. 141.
  142. 142.
  143. 143.
  144. 144.
  145. 145.
    Betz, J.W., Effect of narrowband interference on GPS code tracking accuracy, in Proc. 2000 Nat. Tech. Mtg. ION, Anaheim, pp. 16–27, January 2000.Google Scholar
  146. 146.
    Wallace, K., and Schwoerer, B., Concept for automatic reporting of Global Positioning System radio frequency interference, in Proc. 2000 Nat. Tech. Mtg. ION, Anaheim, pp. 9–15, January 2000.Google Scholar
  147. 147.
    Betz, J.W., Analysis of M code signal interference with C/A code receivers, in Proc. 2000 Nat. Tech. Mtg. ION, Anaheim, pp. 1–8, January 2000.Google Scholar
  148. 148.
    Khan, M., and Lazar, S., GPS Radio Frequency (RF) spectrum defense, in Proc. IAIN World Cong. 56th Ann. Mtg. ION, The Catamaran Resort Hotel, San Diego, pp. 200–208, June 2000.Google Scholar
  149. 149.
    Lazar, S., Raghavan, S., and Turner, D., Issues in sharing and encroachment: a hierarchical approach to like-system spectrum sharing, in Proc. IAIN World Cong. 56th Ann. Mtg. ION, The Catamaran Resort Hotel, San Diego, pp. 209–216, June 2000.Google Scholar
  150. 150.
    Winkel, J.O., Konig, D., Oehler, V., Eissfeller, B., Hein, G., Positioning and navigation using mobile communication: alternative or supplement to a future GNSS-2?, in Proc. IAIN World Cong. 56th Ann. Mtg. ION, San Diego, pp. 451–460, June 2000.Google Scholar
  151. 151.
    Hegarty, C., Van Dierendonck, A.J., Bobyn, D., Tran, M., and Grabowski, J., Suppression of pulsed interference through blanking, in Proc. IAIN World Cong. 56th Ann. Mtg. ION, San Diego, pp. 399–408, June 2000.Google Scholar
  152. 152.
    Peiro, A.B.M., Beech, T.W., Garcia, A.M., and Merino, M.M.R., Galileo in-orbit control strategy, in Proc. IAIN World Cong. 56th Ann. Mtg. ION, San Diego, pp. 469–480, June 2000.Google Scholar
  153. 153.
    Hein, G., Eissfeller, B., Oehler, V., and Winkel, J.O., Synergies between satellite navigation and location services of terrestrial mobile communication, in Proc. 13th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 2000), Salt Lake City, pp. 535–544, September 2000.Google Scholar
  154. 154.
    Kim, H.S., Hyun, M.P., Park, S.J., Jee, G.-I., Lee, Y.J., You, H.R., and Woo, S.S., Performance analysis of position location methods based on IS-801 Standard, in Proc. 13th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 2000), Salt Lake City, pp. 545–553, September 2000.Google Scholar
  155. 155.
    Lazar, S., Raghavan, S., and Turner, D., Issues in sharing and encroachment: a hierarchical approach to like-system spectrum sharing, in Proc. 13th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 2000), Salt Palace Convention Center, Salt Lake City, pp. 973–980, September 2000.Google Scholar
  156. 156.
    Lortie, J.P., Jr., Future GNSS architecture: interoperability or compatibility? between systems what is the prudent course to pursue, in Proc. 13th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 2000), Salt Palace Convention Center, Salt Lake City, pp. 1332–1339, September 2000.Google Scholar
  157. 157.
    Eissfeller, B., Hein, G.W., Winkel, J., and Hartl, P.H., Requirements on the Galileo signal structure, in Proc. 13th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 2000), Salt Lake City, pp. 1772–1781, September 2000.Google Scholar
  158. 158.
    Godet, J., GPS/GALILEO radio frequency compatibility analysis, in Proc. 13th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 2000), Salt Lake City, pp. 1782–1790, September 2000.Google Scholar
  159. 159.
    Arif, M.Z., Brami, S., Haro, P., and Pasquali, R., The GEMINUS proposed Galileo services: evolution of GNSS, in Proc. 13th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 2000), Salt Lake City, pp. 1798–1806, September 2000.Google Scholar
  160. 160.
    Dafesh, P.A., Cooper, L., and Partridge, M., Compatibility of the interplex modulation method with C/A and P(Y) code signals, in Proc. 13th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 2000), Salt Lake City, pp. 2122–2129, September 2000.Google Scholar
  161. 161.
    Bull, B., A real time differential GPS tracking system for NASA sounding rockets, in Proc. 13th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 2000), Salt Lake City, pp. 2028–2037, September 2000.Google Scholar
  162. 162.
    Silva, J.M., The nationwide differential global positioning system and electric power line interference, in Proc. 13th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 2000), Salt Lake City, pp. 489–498, September 2000.Google Scholar
  163. 163.
    Klukas, R., Lachapelle, G., and Fattouche, M., Estimation noise of a cellular telephone positioning system, Navigation, vol. 47, no. 3, pp. 167–174, fall 2000.Google Scholar
  164. 164.
    Ross, J.T., Leva, J.L., and Yoder, S., Effect of partial-band interference on receiver estimation of C/N0: measurements, in Proc. 2001 Nat. Tech. Mtg. ION, Long Beach, pp. 829–838, January 2001.Google Scholar
  165. 165.
    Guggenbuehl, P., and Boggs, M., Global positioning system advanced targeting system, in Proc. 2001 Nat. Tech. Mtg. ION, Long Beach, pp. 426–431, January 2001.Google Scholar
  166. 166.
    Martin, S., Usage of terrestrial DGPS Services for high precision aircraft applications, in Proc. 2001 Nat. Tech. Mtg. ION, Long Beach, pp. 310–318, January 2001.Google Scholar
  167. 167.
    Lee, R., Slattery, R., Kovach, K., Thompson, R., and Kuhlmann, K.R., Improving GPS for aviation navigation: GPS operational requirements document (ORD) aviation annex, in Proc. 2001 Nat. Tech. Mtg. ION, Long Beach, pp. 124–132, January 2001.Google Scholar
  168. 168.
    Dafesh, P.A., Wong, R.L., Partridge, M.D., and Fan, T., Measurements of GPS receiver compatibility with interplex-modulated M-code signals, in Proc. 57th Ann. Mtg. ION, Albuquerque, pp. 100–108, June 2001.Google Scholar
  169. 169.
    Tetewsky, A., Soltz, A., Bogner, T., and O’Neil, E., The key to unlocking the emerging market for civil (and DoD) applications of navigation technology: cost scalable interface standardization, in Proc. 57th Ann. Mtg. ION, Albuquerque, pp. 722–732, June 2001.Google Scholar
  170. 170.
    Holmes, J.K., and Dafesh, P.A., Matched filter mean acquisition time performance for P(Y), BOC(10,5), and MAN(10) codes with FFT aiding and noncoherent combining, in Proc. 57th Ann. Mtg. ION, Albuquerque, pp. 121–139, June 2001.Google Scholar
  171. 171.
    Luo, M., Akos, D., Koenig, M., Opshaug, G., Pullen, S., Enge, P., Erlandson, B., and Frodge, S., Testing and research on interference to GPS from UWB transmitters, in Proc. 14th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 2001), Salt Lake City, pp. 1–13, September 2001.Google Scholar
  172. 172.
    Erlandson, R.J., and Van Dierendonck, A.J., GPS receiver susceptibility to ultra-wideband RFI: test results and RFI link analyses, in Proc. 14th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 2001), Salt Lake City, pp. 14–25, September 2001.Google Scholar
  173. 173.
    Turner, D., Report of the AIAA international space cooperation working group on global navigation satellite systems, in Proc. 14th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 2001), Salt Lake City, pp. 81–89, September 2001.Google Scholar
  174. 174.
    Lavrakas, J.W., A systems approach to a national position, navigation and timing service, in Proc. 14th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 2001), Salt Lake City, pp. 703–736, September 2001.Google Scholar
  175. 175.
    Andreone, V., Mediavilla, R., and Broughton, C., North slope 2000: flight testing Military/Civil GPS receivers against north warning system radars, in Proc. 14th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 2001), Salt Lake City, pp. 912–923, September 2001.Google Scholar
  176. 176.
    Bett, C.J., Simon, S.A., Farnworth, B.J., Boyd, R.W., and Brewer, J.J., Flight test of the JPALS LDGPS demonstration system, in Proc. 14th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 2001), Salt Lake City, pp. 1159–1169, September 2001.Google Scholar
  177. 177.
    Katanik, T., Simon, S., Bett, C., Driscoll, B., Tsamis, D., Flemming, J., Norwood, R., and Barry, J., Interoperability between civil LAAS and military JPALS precision approach and landing systems, in Proc. 14th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 2001), Salt Lake City, pp. 1179–1189, September 2001.Google Scholar
  178. 178.
    Tytgat, L., and Campagne, P., GALILEO: taking the next step, in Proc. 14th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 2001), Salt Lake City, pp. 1255–1263, September 2001.Google Scholar
  179. 179.
    Dutton, L., Ahmed, R., and Bou, J.-F., The commercialisation of GNSS services, in Proc. 14th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 2001), Salt Lake City, pp. 1283–1290, September 2001.Google Scholar
  180. 180.
    Hein, G.W., Godet, J., Issler, J.-L., Martin, J.-C., Lucas-Rodriguez, R., and Pratt, T., The GALILEO frequency structure and signal design, in Proc. 14th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 2001), Salt Lake City, pp. 1273–1282, September 2001.Google Scholar
  181. 181.
    Pasquali, R., Navigation related communication services, the case of a GALILEO service option, in Proc. 14th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 2001), Salt Lake City, pp. 2067–2085, September 2001.Google Scholar
  182. 182.
    Barker, B.C., III, and Straton, J.R., GPS military signal modernization: updates to design and characteristics, in Proc. 14th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 2001), Salt Lake City, pp. 2716–2721, September 2001.Google Scholar
  183. 183.
    McKendree, T.L., Ideas for GPS IV, in Proc. 14th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 2001), Salt Lake City, pp. 2745–2750, September 2001.Google Scholar
  184. 184.
    Dafesh, P.A., Bow, R.T., Partridge, M.D., and Fan, T. Simulation and hardware demonstration of new L2 civilian GPS ranging codes, in Proc. 2002 Nat. Tech. Mtg. ION, The Catamaran Resort Hotel, San Diego, pp. 925–930, January 2002.Google Scholar
  185. 185.
    Hegarty, C., and Tran, M., Compatibility of the new military GPS signals with civil aviation receivers, in Proc. 58th Ann. Mtg. ION CIGTF 21st Guid. Test Sym., Hyatt Regency Hotel, Albuquerque, pp. 555–568, June 2002.Google Scholar
  186. 186.
    Lee, Y.C., Compatibility of the new military GPS signals with non-aviation receivers, in Proc. 58th Ann. Mtg. ION CIGTF 21st Guid. Test Symp., Hyatt Regency Hotel, Albuquerque, pp. 581–597, June 2002.Google Scholar
  187. 187.
    Hein, G.W., Godet, J., Issler, J.-L., Martin, J.-C., Erhard, P., Lucas-Rodriguez, R., and Pratt, T., Status of Galileo frequency and signal design, in Proc. 15th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 2002), Portland, pp. 266–277, September 2002.Google Scholar
  188. 188.
    Fyfe, P., Davis, K., Jeng, I., Kelley, C., and Mosley, C., GPS and Galileo – interoperability for civil aviation applications, in Proc. 15th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 2002), Portland, pp. 289–302, September 2002.Google Scholar
  189. 189.
    Bou, J.F., Dussurgey, C., Leblond, V., and Panefieu, B., Galileo PRS service, in Proc. 15th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 2002), Portland, pp. 303–319, September 2002.Google Scholar
  190. 190.
    Leonard, A., Blomenhofer, H., and Izquierdo, I., GPS and GALILEO interoperability and synergies, in Proc. 15th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 2002), Portland, pp. 330–341, September 2002.Google Scholar
  191. 191.
    Hegarty, C., Tran, M., and Lee, Y., Simplified techniques for analyzing the effects of non-white interference on GPS receivers, in Proc. 15th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 2002), Portland, pp. 620–629, September 2002.Google Scholar
  192. 192.
    Cabler, H., and DeCleene, B., LPV: new, improved WAAS instrument approach, in Proc. 15th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 2002), Portland, pp. 1013–1021, September 2002.Google Scholar
  193. 193.
    Van Dierendonck, A.J., and Hegarty, C., Methodologies for assessing intrasystem and intersystem interference to satellite navigation systems, in Proc. 15th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 2002), Portland, pp. 1241–1250, September 2002.Google Scholar
  194. 194.
    Titus, B.M., Dafesh, P.A., Wong, R., Maine, K.P., Jr., and Stansell, T.A., Assessing ultra wide band (UWB) interference to GPS receivers, in Proc. 15th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 2002), Portland, pp. 1251–1259, September 2002.Google Scholar
  195. 195.
    Godet, J., de Mateo, J.C., Erhard, P., and Nouvel, O., Assessing the radio frequency compatibility between GPS and Galileo, in Proc. 15th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 2002), Oregon Convention Center, Portland, pp. 1260–1269, September 2002.Google Scholar
  196. 196.
    Soellner, M., Kohl, R., Luetke, W., and Erhard, Ph., The impact of linear and non-linear signal distortions on Galileo code tracking accuracy, in Proc. 15th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 2002), Portland, pp. 1270–1285, September 2002.Google Scholar
  197. 197.
    Lionel R., Macabiau, C., Nouvel, O., Jeandel, Q., Vigneau, W., Calmettes, V., and Issler, JL., A software receiver for GPS-IIF L5 signal, in Proc. 15th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 2002), Portland, pp. 1540–1553, September 2002.Google Scholar
  198. 198.
    Grabowski, J., and Hegarty, C., Characterization of L5 receiver performance using digital pulse blanking, in Proc. 15th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 2002), Portland, pp. 1630–1635, September 2002.Google Scholar
  199. 199.
    Gao, Y., and Shen, X., A new method for carrier-phase-based precise point positioning, Navigation, vol. 49, no. 2, pp. 109–116, sum. 2002.Google Scholar
  200. 200.
    Sousa, P., and Wellons, L., Results of shipboard relative GPS (SRGPS) testing for the pegasus X-47A unmanned combat air vehicle (UCAV), in Proc. 59th Ann. Mtg. ION CIGTF 22nd Guid. Test Sym., Albuquerque, pp. 291–300, June 2003.Google Scholar
  201. 201.
    Kovach, K., Possibilities for a 27 optimized constellation, in Proc. 59th Ann. Mtg. ION CIGTF 22nd Guid. Test Symp., Albuquerque, pp. 22–56, June 2003.Google Scholar
  202. 202.
    Dellago, R., Detoma, E., and Luongo, F., Galileo-GPS interoperability and compatibility: a synergetic viewpoint, in Proc. 16th Inter. Tech. Mtg. Sat. Div. ION (ION GPS/GNSS 2003), Portland, pp. 542–548, September 2003.Google Scholar
  203. 203.
    Bastide, F., Macabiau, C., Akos, D.M., and Roturier, B., Assessment of L5 receiver performance in presence of interference using a realistic receiver simulator, in Proc. 16th Inter. Tech. Mtg. Sat. Div. ION (ION GPS/GNSS 2003), Portland, pp. 142–152, September 2003.Google Scholar
  204. 204.
    Jones, R., and Price, D., GALILEO augmentation for a precise positioning application, in Proc. 16th Inter. Tech. Mtg. Sat. Div. ION (ION GPS/GNSS 2003), Portland, pp. 579–592, September 2003.Google Scholar
  205. 205.
    Ganguly, S., and Jovancevic, A., Interoperability study between GPS and Galileo signals, in Proc. 16th Inter. Tech. Mtg. Sat. Div. ION (ION GPS/GNSS 2003), Portland, pp. 1023–1034, September 2003.Google Scholar
  206. 206.
    Van Dierendonck, A.J., Coker, R., Razumovsky, O., Bobyn, D., and Kroon, H., Inmarsat-4 navigation transponder test equipment and control software for in-orbit tests, in Proc. 16th Inter. Tech. Mtg. Sat. Div. ION (ION GPS/GNSS 2003), Portland, pp. 1307–1319, September 2003.Google Scholar
  207. 207.
    Kim, T., and Grabowski, J., Validation of GPS L5 coexistence with DME/TACAN and link-16 systems, Proc. 16th Inter. Tech. Mtg. Sat. Div. ION (ION GPS/GNSS 2003), Portland, pp. 1455–1469, September 2003.Google Scholar
  208. 208.
    Goodrich, B., Gonzales, B., Hughes, L.H., Weaver, R., and Deary, B., Signal generation, verification, and interaction analysis of legacy and modernized GNSS systems, in Proc. 16th Inter. Tech. Mtg. Sat. Div. ION (ION GPS/GNSS 2003), Portland, pp. 1494–1501, September 2003.Google Scholar
  209. 209.
    Jurek, M.H., and Franco, G.A., GPS modernized block IIR system test program and anomaly reporting process, in Proc. 16th Inter. Tech. Mtg. Sat. Div. ION (ION GPS/GNSS 2003), Portland, pp. 1515–1520, September 2003.Google Scholar
  210. 210.
    Hammock, A., Maj Anderson, J., Maj Hebert, J., Jokerst, S., Emery, A., Stroing, C., and Torres, J., Anechoic chamber testing of M-Code interference with legacy military receivers, in Proc. 16th Inter. Tech. Mtg. Sat. Div. ION (ION GPS/GNSS 2003), Oregon Convention Center, Portland, pp. 1521–1525, September 2003.Google Scholar
  211. 211.
    Luba, O., Boyd, L., and Gower, A., GPS III system operations concepts, in Proc. 16th Inter. Tech. Mtg. Sat. Div. ION (ION GPS/GNSS 2003), Portland, pp. 1561–1570, September 2003.Google Scholar
  212. 212.
    Swann, J., Chatre, E., and Ludwig, D., Galileo: benefits for location-based services, in Proc. 16th Inter. Tech. Mtg. Sat. Div. ION (ION GPS/GNSS 2003), Portland, pp. 1603–1612, September 2003.Google Scholar
  213. 213.
    Normark, P.-L., Ståhlberg, C., Seco-Granados, G., Interference study – processing semi-live Galileo L1 and live GPS L1 data in a high-performance GNSS software receiver, in Proc. 16th Inter. Tech. Mtg. Sat. Div. ION (ION GPS/GNSS 2003), Portland, pp. 1965–1972, September 2003.Google Scholar
  214. 214.
    Titus, B.M., Betz, J., Hegarty, C., and Owen, R., Intersystem and intrasystem interference analysis methodology, in Proc. 16th Inter. Tech. Mtg. Sat. Div. ION (ION GPS/GNSS 2003), Portland, pp. 2061–2069, September 2003.Google Scholar
  215. 215.
    Ernou, Y., Renard, A., and Kirby, E., ATC radar interference impact on air receiver, in Proc. 16th Inter. Tech. Mtg. Sat. Div. ION (ION GPS/GNSS 2003), Portland, pp. 2093–2101, September 2003.Google Scholar
  216. 216.
    Bastide, F., Akos, D., Macabiau, C., and Roturier, B., Automatic gain control (AGC) as an interference assessment tool, in Proc. 16th Inter. Tech. Mtg. Sat. Div. ION (ION GPS/GNSS 2003), Portland, pp. 2042–2053, September 2003.Google Scholar
  217. 217.
    Stevens, J.R.A., Lage, M.E., Nam, Y.S., and Peterson, B.R., JPALS availability modeling and assessment in nominal and jamming environments, in Proc. 16th Inter. Tech. Mtg. Sat. Div. ION (ION GPS/GNSS 2003), Portland, pp. 2337–2348, September 2003.Google Scholar
  218. 218.
    Miller, J.J., GPS & Galileo: evolution towards GNSS, in Proc. 2004 Nat. Tech. Mtg. ION, The Catamaran Resort Hotel, San Diego, pp. 73–91, January 2004.Google Scholar
  219. 219.
    Erlandson, R.J., Kim, T., Hegarty, C., and Van Dierendonck, A.J., Pulsed RFI effects on aviation operations using GPS L5, in Proc. 2004 Nat. Tech. Mtg. ION, San Diego, pp. 1063–1076, January 2004.Google Scholar
  220. 220.
    Bastide, F., Chatre, E., Macabiau, C., and Roturier, B., GPS L5 and GALILEO E5a/E5b signal-to-noise density ratio degradation due to DME/TACAN signals: simulations and theoretical derivation, in Proc. 2004 Nat. Tech. Mtg. ION, San Diego, pp. 1049–1062, January 2004.Google Scholar
  221. 221.
    Carroll, K., Celano, T., Biggs, C., and Weeks, G.K., Jr., Enhanced Loran for timing and frequency, in Proc. 2004 Nat. Tech. Mtg. ION, San Diego, pp. 735–739, January 2004.Google Scholar
  222. 222.
    Hegarty, C., Tran, M., and Betz, J.W., Multipath performance of the new GNSS signals, in Proc. 2004 Nat. Tech. Mtg. ION, San Diego, pp. 333–342, January 2004.Google Scholar
  223. 223.
    DiEsposti, R., DiLellio, J., Kelley, C., Dorsey, A., Fliegel, H., Berg, J., Edgar, C., McKendree, T., and Shome, P., The proposed state vector representation of broadcast navigation message for user equipment implementation of GPS satellite ephemeris propagation, in Proc. 2004 Nat. Tech. Mtg. ION, San Diego, pp. 294–312, January 2004.Google Scholar
  224. 224.
    Lee, Y.C., Performance of receiver autonomous integrity monitoring (RAIM) in the presence of simultaneous multiple satellite faults, in Proc. 60th Ann. Mtg. ION, Dayton, pp. 687–697, June 2004.Google Scholar
  225. 225.
    Peterson, B.R., Johnson, G., and Stevens, J., Feasible architectures for joint precision approach and landing system (JPALS) for land and sea, in Proc. 17th Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2004), Long Beach, pp. 544–554, September 2004.Google Scholar
  226. 226.
    Simonsen, K., Suycott, M., Crumplar, R., and Sloat, S., LOCO GPSI: detection and location of GPS interference/jamming, in Proc. 17th Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2004), Long Beach, pp. 555–560, September 2004.Google Scholar
  227. 227.
    Rodríguez, J.Á.Á., Irsigler, M., Hein, G.W., and Pany, T., Combined Galileo/GPS frequency and signal performance analysis, in Proc. 17th Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2004), Long Beach, pp. 632–649, September 2004.Google Scholar
  228. 228.
    Ganguly, S., Jovancevic, A., and Noronha, J., Interoperability between GPS and Galileo, in Proc. 17th Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2004), Long Beach, pp. 670–680, September 2004.Google Scholar
  229. 229.
    Bedrich, S., and Müncheberg, S., GNSS-based sensor fusion for telematic applications in railway traffic, in Proc. 17th Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2004), Long Beach, pp. 681–691, September 2004.Google Scholar
  230. 230.
    Lee, Y.C., Investigation of extending receiver autonomous integrity monitoring (RAIM) to combined use of Galileo and modernized GPS, in Proc. 17th Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2004), Long Beach, pp. 1691–1698, September 2004.Google Scholar
  231. 231.
    Blomenhofer, H., Ehret, W., Leonard, A., and Blomenhofer, E., GNSS/Galileo global and regional integrity performance analysis, in Proc. 17th Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2004), Long Beach, pp. 2158–2168, September 2004.Google Scholar
  232. 232.
    Christie, J.R.I., Bentley, P.B., Ciboci, J.W., Gellrich, C.A., Gondek, J. M., Knoth, B.K., Ressler, M.B., Oetzel, G.N., GPS signal quality monitoring system, in Proc. 17th Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2004), Long Beach, pp. 2239–2245, September 2004.Google Scholar
  233. 233.
    Bastide, F., Galileo E5a/E5b and GPS L5 acquisition time statistical characterization and application to civil aviation, in Proc. 17th Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2004), Long Beach, pp. 2623–2635, September 2004.Google Scholar
  234. 234.
    Luo, M., Pullen, S., Ene, A., Qiu, D., Walter, T., and Enge, P., Ionosphere threat to LAAS: updated model, user impact, and mitigations, in Proc. 17th Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2004), Long Beach, pp. 2771–2785, September 2004.Google Scholar
  235. 235.
    Gupta, S.K., and Louie, B.M., LADO (Launch, anomaly, and disposal operations), a new challenge for GPS, in Proc. 17th Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2004), Long Beach, pp. 2219–2227, September 2004.Google Scholar
  236. 236.
    Monnerat, M., Couty, R., Vincent, N., Huez, O., and Chatre, E., The assisted GNSS, technology and applications, in Proc. 17th Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2004), Long Beach, pp. 2479–2488, September 2004.Google Scholar
  237. 237.
    Fan, T., Lin, V.S., Wang, G.H., Maine, K.P., and Dafesh, P.A., The RF compatibility of flexible navigation signal combining methods, in Proc. 2005 Nat. Tech. Mtg. ION, San Diego, pp. 810–818, January 2005.Google Scholar
  238. 238.
    Partridge, M.D., and Dybdal, R.B., Design/calibration of GPS on-orbit monitoring capability, in Proc. 2005 Nat. Tech. Mtg. ION, San Diego, pp. 358–364, January 2005.Google Scholar
  239. 239.
    Pratt, A.R., and Owen, J.I.R., Galileo signal optimisation In L1, in Proc. 2005 Nat. Tech. Mtg. ION, San Diego, pp. 332–345, January 2005.Google Scholar
  240. 240.
    Van Dierendonck, A.J., GNSS user assessment of the plans and the benefits of GNSS modernized signals and services, in Proc. 61st Ann. Mtg. ION, Royal Sonesta Hotel, Cambridge, pp. 201–209, June 2005.Google Scholar
  241. 241.
    Nunes, F.D., Sousa, F.M.G., and Leitao, J.M.N., Improving multipath mitigation in GPS/Galileo BOC signals with gating functions, in Proc. 61st Ann. Mtg. ION, Cambridge, pp. 498–507, June 2005.Google Scholar
  242. 242.
    Shmihluk, K., Carroll, K., Celano, T., Biggs, C., and Powers, E., Enhanced LORAN implementation and evaluation for timing and frequency, in Proc. 61st Ann. Mtg. ION, Cambridge, pp. 379–385, June 2005.Google Scholar
  243. 243.
    Peterson, B.R., Pullen, S., Pervan, B., McGraw, G., Skidmore, T., and Anderson, S., Investigation of common architectures for land- and sea-based JPALS, in Proc. 18th Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2005), Long Beach, pp. 26–37, September 2005.Google Scholar
  244. 244.
    Ripple, M.U., and Vidal, A., New U.S. GPS policy from a European perspective, in Proc. 18th Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2005), Long Beach, pp. 407–413, September 2005.Google Scholar
  245. 245.
    Wallner, S., Hein, G.W., Pany, T., Avila-Rodriguez, J.-A., and Posfay, A., Interference computations between GPS and GALILEO, in Proc. 18th Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2005), Long Beach, pp. 861–876, September 2005.Google Scholar
  246. 246.
    Hein, G.W., Avila-Rodriguez, J.-A., Ries, L., Lestarquit, L., Issler, J.-L., Godet, J., and Pratt, T., A candidate for the Galileo L1 OS optimized signal, in Proc. 18th Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2005), Long Beach, pp. 833–845, September 2005.Google Scholar
  247. 247.
    Normark, P.-L., and Ståhlberg, C., Hybrid GPS/Galileo real time software receiver, in Proc. 18th Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2005), Long Beach, pp. 1906–1913, September 2005.Google Scholar
  248. 248.
    Blunt, P., Ebinuma, T., Hodgart, S., and Unwin, M., A demonstration of Galileo transmitter /receiver architecture for space applications, in Proc. 18th Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2005), Long Beach, pp. 1914–1921, September 2005.Google Scholar
  249. 249.
    Paynter, G., and Banas, V., Compliance of NovAtel’s GPS-702L antenna to the European Union’s new WEEE (Waste Electrical and Electronic Equipment) and RoHS (Restriction of the use of Certain Hazardous Substances) Directives, in Proc. 18th Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2005), Long Beach, pp. 2253–2262, September 2005.Google Scholar
  250. 250.
    Li, B., Dempster, A., Rizos, C., Lee, H.K., and Li, D., Application of interpolation to mobile phone fingerprinting for positioning, in Proc 18th Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2005), Long Beach, pp. 2268–2276, September 2005.Google Scholar
  251. 251.
    Pratt, A.R., and Owen, J.I.R., Signal multiplex techniques in satellite channel availability possible applications to Galileo, in Proc. 18th Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2005), Long Beach, pp. 2448–2460, September 2005.Google Scholar
  252. 252.
    Rebeyrol, E., Macabiau, C., Ries, L., Issler, J.-L., Bousquet, M., Boucheret, M.-L., Interplex modulation for navigation systems at the L1 Band, in Proc. 2006 Nat. Tech. Mtg. ION, Monterey, pp. 100–111, January 2006.Google Scholar
  253. 253.
    Peng, C., Intelligence vehicle-base station navigation system VSB/BSV, in Proc. 2006 Nat. Tech. Mtg. ION, Monterey, pp. 813–824, January 2006.Google Scholar
  254. 254.
    Shen, X., and Gao, Y., Analyzing the impacts of Galileo and modernized GPS on precise point positioning, in Proc. 2006 Nat. Tech. Mtg. ION, Hyatt Regency Hotel, Monterey, pp. 837–846, January 2006.Google Scholar
  255. 255.
    Siu, P., Apker, C., McMillen, J., and Sorber, S., G-STAR GPS anti-jam technology, in Proc. 2006 Nat. Tech. Mtg. ION, Hyatt Regency Hotel, Monterey, pp. 1057–1063, January 2006.Google Scholar
  256. 256.
    Sousa, F.M., Nunes, F.D., and Leitao, J.M., Strobe pulse design for multipath mitigation in BOC GNSS receivers, in Proc. IEEE/ION PLANS 2006, San Diego, pp. 348–355, April 2006.Google Scholar
  257. 257.
    Ho, C.-S., Weng, C.-T., and Guan, M., A crosswind hazard study with using FDR Data, in Proc. IEEE/ION PLANS 2006, San Diego, pp. 818–822, April 2006.Google Scholar
  258. 258.
    Hein, G.W., Avila-Rodriguez, J.-A., Wallner, S., Pratt, A.R., Owen, J., Issler, J.-L., Betz, J.W., Hegarty, C.J., Lenahan, S., Rushanan, J.J., Kraay, A.L., Stansell, T.A., MBOC: the new optimized spreading modulation recommended for GALILEO L1 OS and GPS L1C, in Proc. IEEE/ION PLANS 2006, San Diego, pp. 883–892, April 2006.Google Scholar
  259. 259.
    Kelly, J.T., Chapman, M.D., Barton, B., Handheld, low cost situational awareness using existing military fielded equipment, in Proc. 19th Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2006), Fort Worth, pp. 182–188, September 2006.Google Scholar
  260. 260.
    Alcantarilla, I., Porras, D., Tajdine, A., Zarraoa, N., and Lévy, J.C., The benefits of multi-constellation GNSS augmentations, in Proc. 19th Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2006), Fort Worth, pp. 930–938, September 2006.Google Scholar
  261. 261.
    Lee, Y.-W., Suh, Y., and Shibasaki, R., Simulation-based estimation of multipath mitigation using 3D-GIS and spatial statistics, in Proc. 19th Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2006), Fort Worth, pp. 1778–1783, September 2006.Google Scholar
  262. 262.
    Betz, J., Blanco, M.A., Cahn, C.R., Dafesh, P.A., Hegarty, C.J., Hudnut, K.W., Kasemsri, V., Keegan, R., Kovach, K., Lenahan, L.S., Ma, H.H., Rushanan, J., Rushanan, J.J., Sklar, D., Stansell, T.A., Wang, C.C., and Yi, S.K., Description of the L1C signal, in Proc. 19th Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2006), Fort Worth, pp. 2080–2091, September 2006.Google Scholar
  263. 263.
    Mongrédien, C., Lachapelle, G., and Cannon, M.E., Testing GPS L5 acquisition and tracking algorithms using a hardware simulator, in Proc. 19th Intern. Tech. Mtg. Sat. Div. ION (ION GNSS 2006), Fort Worth, pp. 2901–2913, September 2006.Google Scholar
  264. 264.
    Leite, N.P.O., and Walter, F., Static and dynamic performance of a novel GPS attitude determination algorithm (GADA), in Proc. 2007 Nat. Tech. Mtg. ION, San Diego, pp. 161–171, January 2007.Google Scholar
  265. 265.
    Sakai, T., Fukushima, S., Takeichi, N., and Ito, K., Augmentation performance of QZSS L1-SAIF signal, in Proc. 2007 Nat. Tech. Mtg. ION, San Diego, pp. 411–421, January 2007.Google Scholar
  266. 266.
    DiEsposti, R., and Hsu, K., Proposed operations concepts and flexible UE architectures for modernized user equipment SIS utilization for transition from test mode to IOC through FOC, in Proc. 2007 Nat. Tech. Mtg. ION, San Diego, pp. 548–560, January 2007.Google Scholar
  267. 267.
    Vo, A., Falchetti, C.R., Morrison, A.W., ADAP: enhancing GPS protection for Navwar, in Proc. 2007 Nat. Tech. Mtg. ION, San Diego, pp. 990–997, January 2007.Google Scholar
  268. 268.
    Rushanan, J.J., The spreading and overlay codes for the L1C signal, Navigation, vol. 54, no. 1, pp. 43–51, spring 2007.Google Scholar
  269. 269.
    Hein, G.W., Towards a GNSS system of systems, in Proc. 20th Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2007), Fort Worth Convention Center, Fort Worth, pp. 22–30, September 2007 (Plenary Presentation).Google Scholar
  270. 270.
    Avila-Rodriguez, J.-A., Wallner, S., Hein, G.W., Eissfeller, B., Irsigler, M., and Issler, J.-L., A vision on new frequencies, signals and concepts for future GNSS systems, Proc. 20th Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2007), Fort Worth, pp. 517–534, September 2007.Google Scholar
  271. 271.
    Soellner, M., Briechle, C., Hechenblaikner, G., Kaindl, M., Kohl, R., Lindemer, W., Middendorf, M., and Zecha, C., The BayNavTech(TM) signal experimentation facility (BaySEF(TM)) is ready for assessing GNSS signal performance, in Proc. 20th Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2007), Fort Worth, pp. 1065–1072, September 2007.Google Scholar
  272. 272.
    Soualle, F., and Burger, T., Radio frequency compatibility criterion for code tracking performance, in Proc. 20th Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2007), Fort Worth Convention Center, Fort Worth, pp. 1201–1210, September 2007.Google Scholar
  273. 273.
    Brown, A., and Ganguly, S., Advanced family of software simulators, in Proc. 20th Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2007), Fort Worth, pp. 1265–1276, September 2007.Google Scholar
  274. 274.
    Avila-Rodriguez, J.-A., Hein, G.W., Wallner, S., Issler, J.-L., Ries, L., Lestarquit, L., de Latour, A., Godet, J., Bastide, F., Pratt, T., and Owen, J., The MBOC modulation: the final touch to the Galileo frequency and signal plan, in Proc. 20th Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2007), Fort Worth Convention Center, Fort Worth, pp. 1515–1529, September 2007 (Published in NAVIGATION).Google Scholar
  275. 275.
    Amin, B., Jitter analysis of QPSK and BOC(n,n) GNSS signals, in Proc. 20th Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2007), Fort Worth, pp. 1543–1548, September 2007.Google Scholar
  276. 276.
    Wallner, S., Avila-Rodriguez, J.-A., Hein, G.W., and Rushanan, J.J., Galileo E1 OS and GPS L1C pseudo random noise codes – requirements, generation, optimization and comparison, in Proc. 20th Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2007), Fort Worth, pp. 1549–1563, September 2007.Google Scholar
  277. 277.
    Kaindl, M., Soellner, M., Zecha, C., and Kohl, R., Performance analysis of GIOVE-A signals in comparison with GPS based on wideband measurements with the BayNavTechTM signal evaluation facility (BaySEFTM), in Proc. 20th Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2007), Fort Worth, pp. 1588–1595, September 2007.Google Scholar
  278. 278.
    Kogure, S., Kishimoto, M., Sawabe, M., and Terada, K., Introduction of IS-QZSS (interface specification for Quasi Zenith Satellite System), in Proc. 20th Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2007), Fort Worth, pp. 3008–3014, September 2007.Google Scholar
  279. 279.
    Grelier, T., Ghion, A., Dantepal, J., Ries, L., DeLatour, A., Issler, J.-L., Avila-Rodriguez, J.A., Wallner, S., and Hein, G.W., Compass signal structure and first measurements, in Proc. 20th Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2007), Fort Worth, pp. 3015–3024, September 2007.Google Scholar
  280. 280.
    Chiu, D.S., MacGougan, G., and O’Keefe, K., UWB assisted GPS RTK in hostile environments, in Proc. 2008 Nat. Tech. Mtg. ION, San Diego, p. 532, January 2008.Google Scholar
  281. 281.
    Sakai, T., Fukushima, S., Takeichi, N., and Ito, K., Implementation of the QZSS L1-SAIF message generator, in Proc. 2008 Nat. Tech. Mtg. ION, San Diego, p. 464, January 2008.Google Scholar
  282. 282.
    Renaudin, V., Merminod, B., and Kasser, M., Optimal data fusion for pedestrian navigation based on UWB and MEMS, in Proc. IEEE/ION PLANS 2008, Monterey, pp. 341–349, May 2008.Google Scholar
  283. 283.
    Kim, J.I., Lee, J.G., and Gee, G.I., Location determination in WiBro (Wireless Broadband) system, in Proc. IEEE/ION PLANS 2008, Monterey, pp. 832–837, May 2008.Google Scholar
  284. 284.
    Nosenko, Y., GLONASS in a multi-GNSS world, in Proc. 21st Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2008), Savannah, pp. 7–19, September 2008.Google Scholar
  285. 285.
    Verhoef, P., European GNSS programmes and the future of GNSS, in Proc. 21st Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2008), Savannah, pp. 20–29, September 2008.Google Scholar
  286. 286.
    Kim, D., and Langley, R.B., Toward the ultimate RTK: the last challenges in long-range real-time kinematic applications, in Proc. 21st Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2008), Savannah, pp. 385–396, September 2008.Google Scholar
  287. 287.
    Terada, K., Quasi-Zenith Satellite System (QZSS) program update, in Proc. 21st Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2008), Savannah, pp. 493–527, September 2008.Google Scholar
  288. 288.
    Wallner, S., Avila-Rodriguez, J.-A., Won, J.-H., Hein, G., and Issler, J.-L., Revised PRN code structures for Galileo E1 OS, in Proc. 21st Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2008), Savannah, pp. 887–899, September 2008.Google Scholar
  289. 289.
    Lawrence, D., Wide area augmentation system (WAAS) program status, in Proc. 21st Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2008), Savannah, pp. 1009–1031, September 2008.Google Scholar
  290. 290.
    Gadimova, S., International committee on global navigation satellite systems (ICG): 2008 activities, in Proc. 21st Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2008), Savannah, pp. 1994–2003, September 2008.Google Scholar
  291. 291.
    Manandhar, D., Okano, K., Ishii, M., Torimoto, H., Kogure, S., and Maeda, H., Development of ultimate seamless positioning system based on QZSS IMES, in Proc. 21st Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2008), Savannah, pp. 1698–1705, September 2008.Google Scholar
  292. 292.
    Schmitz-Peiffer, A., Stopfkuchen, L., Soualle, F., Floch, J-J., King, R., Fernandez, A., Jorgensen, R., Eissfeller, B., Rodriguez, J.A., Wallner, S., Won, J-H., Pany, T., Anghileri, M., Lankl, B., Schuler, T., and Colzi, E., Assessment on the use of C-Band for GNSS within the European GNSS evolution programme, in Proc. 21st Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2008), Savannah, pp. 2189–2198, September 2008.Google Scholar
  293. 293.
    Avila-Rodriguez, J.-A., Wallner, S., Won, J.-H., Eissfeller, B., Schmitz-Peiffer, A., Floch, J.-J., Colzi, E., and Gerner, J.-L., Study on a Galileo signal and service plan for C-band, in Proc. 21st Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2008), Savannah, pp. 2515–2529, September 2008.Google Scholar
  294. 294.
    Catalán, C., Hernández, C., Mozo, A., Fernández, L., and Amarill, F., Improved integrity concept for Future GNSS evolutions, in Proc. 21st Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2008), Savannah, pp. 2547–2557, September 2008.Google Scholar
  295. 295.
    Huang, Y.-S., and Tsai, M.-L., The impact of Compass/Beidou-2 on future GNSS: A perspective from Asia, in Proc. 21st Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2008), Savannah, pp. 2227–2238, September 2008.Google Scholar
  296. 296.
    Avila-Rodriguez, J.-A., Hein, G.W., Wallner, S., Issler, J.-L., Ries, L., Lestarquit, L., de Latour, A., Godet, J., Bastide, F., Pratt, T., and Owen, J., The MBOC modulation: the final touch to the Galileo frequency and signal plan, Navigation, vol. 55, no. 1, pp. 14–28, Spring 2008.Google Scholar
  297. 297.
    Park, B., and Kee, C., Temporal and spatial decorrelation error reduction by a compact network RTK, in Proc. 2009 Inter. Tech. Mtg. ION, Anaheim, pp. 341–352, January 2009.Google Scholar
  298. 298.
    Sakai, T., Yoshihara, T., Fukushima, S., and Ito, K., The ionospheric correction processor for SBAS and QZSS L1-SAIF, in Proc. 2009 Inter. Tech. Mtg. ION, Anaheim, pp. 312–323, January 2009.Google Scholar
  299. 299.
    Cerruti, A.P., Rushanan, J.J., and Winters, D.W., Modeling C/A on C/A interference, in Proc. 2009 Inter. Tech. Mtg. ION, Anaheim, pp. 142–156, January 2009.Google Scholar
  300. 300.
    Simsky, A., De Wilde, W., Willems, T., Mertens, D., Koitsalu, E., and Sleewaegen, J-M., First field experience with L5 signals: DME Interference Reality Check, in Proc. 22nd Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2009), Savannah, pp. 29–37, September 2009.Google Scholar
  301. 301.
    Savasta, S., Lo Presti, L., Dovis, F., and Margaria, D., Trustworthiness GNSS signal validation by a time-frequency approach, in Proc. 22nd Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2009), Savannah, pp. 66–75, September 2009.Google Scholar
  302. 302.
    Raghavan, S., and Powell, T., A simple approach to obtain the CA code spectral separation coefficient, in Proc. 22nd Int. Tech. Mtg. Sat. Div. ION (ION GNSS 2009), Savannah, pp. 86–94, September 2009.Google Scholar
  303. 303.
    Iwata, T., Toda, K., Kondoh, Y., Yamamoto, T., Kakinuma, M., and Kumagai, S., Dual-frequency spaceborne GPS receiver for the advanced land observing satellite (ALOS): design and flight results, in Proc. 22nd Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2009), Savannah, pp. 1404–1412, September 2009.Google Scholar
  304. 304.
    Liu, W., Zhai, C., Zhang, Y., and Zhan, X., Simulation analysis of GPS/Galileo/Compass radio frequency compatibility, in Proc. 22nd Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2009), Savannah, pp. 1552–1560, September 2009.Google Scholar
  305. 305.
    Mateu, I., Boulanger, C., Issler, J.-L., Ries, L., Avila-Rodriguez, J.-A., Wallner, S., Kraus, T., Eissfeller, B., Mulassano, P., Caporale, M., Germaine, S., Guyomard, J.-Y., Bastide, F., Godet, J., Hayes, D., Serant, D., Thevenon, P., Julien, O., and Hein, G.W., Exploration of possible GNSS signals in S-band, in Proc. 22nd Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2009), Savannah, pp. 1573–1587, September 2009.Google Scholar
  306. 306.
    Yin, X., Kou, Y., and Zhang, Z., Design and implementation of a flexible software-based GNSS IF signal simulator, in Proc. 22nd Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2009), Savannah, pp. 2229–2240, September 2009.Google Scholar
  307. 307.
    O’Brien, A.J., Hayhurst, K., and Gupta, I.J., Effects of rotor blade modulation on GNSS receiver measurements, in Proc. 22nd Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2009), Savannah, pp. 2352–2361, September 2009.Google Scholar
  308. 308.
    Li, X., Zhang, X., and Guo, F., Study on precise point positioning based on combined GPS and GLONASS, in Proc. 22nd Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2009), Savannah, pp. 2449–2459, September 2009.Google Scholar
  309. 309.
    Robertson, G.J., Kieffer, R., Malik, M., Gatti, G., Alpe, V., and Johansson, M., GIOVE-B satellite design and performance validation, in Proc. 22nd Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2009), Savannah, pp. 3008–3016, September 2009.Google Scholar
  310. 310.
    Ohshima, Y., Kawaguchi, Y., Takahashi, T., Soga, H., Moriguchi, T., Noda, H., Kogure, S., and Kishimoto, M., Navigation payload test of proto-flight model (PFM) for the high-accuracy positioning experimental system (HIAPEX) for the Quasi-Zenith Satellite System (QZSS), in Proc. 22nd Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2009), Savannah, pp. 3285–3289, September 2009.Google Scholar
  311. 311.
    Hama, S., Takahashi, Y., Amagai, J., Fujieda, M., Nakamura, M., Takahashi, T., and Horiuchi, S., Development of the time management system, in Proc. 22nd Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2009), Savannah, pp. 3338–3343, September 2009.Google Scholar
  312. 312.
    Inaba, N., Quasi-Zenith satellite system program update, in Proc. 22nd Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2009), Savannah, pp. 3411–3436, September 2009.Google Scholar
  313. 313.
    Sakai, T., Fukushima, S., and Ito, K., Recent development of QZSS L1-SAIF master station, in Proc. 2010 Inter. Tech. Mtg. ION, San Diego, pp. 354–364, January 2010.Google Scholar
  314. 314.
    Shibata, T., and Maeda, H., Extended theory of spectral separation coefficient for GNSS signal interference, in Proc. 2010 Inter. Tech. Mtg. ION, San Diego, pp. 930–940, January 2010.Google Scholar
  315. 315.
    Paonni, M., Anghileri, M., Wallner, S., Avila-Rodriguez, J.-A., and Eissfeller, B., Performance assessment of GNSS signals in terms of time to first fix for cold, warm and hot start, in Proc. 2010 Inter. Tech. Mtg. ION, San Diego, pp. 1051–1066, January 2010.Google Scholar
  316. 316.
    Time Division Duplex (TDD) vs Frequency Division Duplex (FDD) in Wireless Backhauls, White Paper. http://www.netkrom.com/support/whitepapers/TDD_vs_FDD_in_wireless_backhaul_white_paper.pdf
  317. 317.
  318. 318.
    Skalski, H., Mayne, M., and Fauver, B., Future worldwide position, velocity, and timing (PVT) requirements and acquisition strategies, in Proc. 54th Ann. Mtg. ION, Denver, pp. 53–63, June 1998.Google Scholar
  319. 319.
    Silvy, O., and Lavroff, J.L., MAGNET: a European multi-modal approach of space-based navigation, in Proc. 54th Ann. Mtg. ION, Denver, pp. 113–119, June 1998.Google Scholar
  320. 320.
    Kalafus, R.M., Interference to GPS receivers from mobile satellite emissions, in Proc. 11th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 1998), Nashville, pp. 827–832, September 1998.Google Scholar
  321. 321.
    Lucia, D.J., and Anderson, J., Analysis and recommendation for the reuse of the L1 and L2 GPS spectrum, in Proc.11th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 1998), Nashville, pp. 1877–1886, September 1998.Google Scholar
  322. 322.
    Martens, D., and Latterman, D., Stewardship – a growing need to manage a national asset, in Proc. 11th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 1998), Nashville, pp. 1433–1448, September 1998.Google Scholar
  323. 323.
    Dai, D., Walter, T., Enge, P., and Powell, J.D., Interoperation of distributed SBASS : theory, experience and future perspectives, in Proc. 11th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 1998), Nashville, pp. 1355–1364, September 1998.Google Scholar
  324. 324.
    Dafesh, P.A., Parker, A., Holmes, J.K., and Raghavan, S.H., Simulation of the Code tracking performance of square-wave modulated ranging codes, in Proc. 11th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 1998), Nashville, pp. 633–641, September 1998.Google Scholar
  325. 325.
    Fuller, R., Dai, D., Walter, T., Comp, C., Enge, P., and Powell, J.D., Interoperation and integration of satellite based augmentation systems, in Proc. 11th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 1998), Nashville, pp. 121–130, September 1998.Google Scholar
  326. 326.
    Lucia, D.J., and Anderson, J.M., Analysis and recommendation for reuse of the L1 and L2 GPS spectrum, Navigation, vol. 45, no. 4, pp. 251–264, win. 1998–1999.Google Scholar
  327. 327.
    Kozlov, D., and Tkachenko, M., Centimeter-level, real time kinematic positioning with GPS + GLONASS C/A receivers, Navigation, vol. 45, no. 2, pp. 137–160, sum. 1998.Google Scholar
  328. 328.
    Dafesh, P.A., Nguyen, T.M., Lazar, S., Coherent adaptive subcarrier modulation (CASM) for GPS modernization, in Proc. 1999 Nat. Tech. Mtg. ION, San Diego, pp. 649–660, January 1999.Google Scholar
  329. 329.
    Schweikert, R., Woerz, T., and De Gaudenzi, R., On new signal structures for GNSS-2, in Proc. 1999 Nat. Tech. Mtg. ION, San Diego, pp. 109–118, January 1999.Google Scholar
  330. 330.
    Van Dierendonck, A.J., Spilker, J.J., Jr., Proposed civil GPS signal at 1176.45 MHz: In-phase/quadrature codes at 10.23 MHz chip rate, in Proc. 55th Ann. Mtg. ION, Cambridge, pp. 761–770, June 1999.Google Scholar
  331. 331.
    McDonald, K.D., Performance improvements to GPS in the decade 2000–2010, in Proc. 55th Ann. Mtg. ION, Cambridge, pp. 1–15, June 1999.Google Scholar
  332. 332.
    Hegarty, C., Kim, T., Ericson, S., Reddan, P., Morrissey, T., and Van Dierendonck, A.J., Methodology for determining compatibility of GPS L5 with existing systems and preliminary results, in Proc. 55th Ann. Mtg. ION, Royal Sonesta Hotel, Cambridge, pp. 635–644, June 1999.Google Scholar
  333. 333.
    Holmes, J.K., Raghavan, S., Dafesh, P., and Lazar, S., Effective signal to noise ratio performance comparison of some GPS modernization signals, in Proc. 12th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 1999), Nashville, pp. 1755–1762, September 1999.Google Scholar
  334. 334.
    Lucas, R., and Ludwig, D., GALILEO: system requirements and architectures, in Proc. 12th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 1999), Nashville, pp. 2097–2102, September 1999.Google Scholar
  335. 335.
    Lazar, S., Clark, J., and Turner, D., Signal design guidelines for navigation satellite system design, in Proc. 12th Intern. Tech. Mtg. Sat. Div. ION (ION GPS 1999), Nashville, pp. 2079–2086, September 1999.Google Scholar
  336. 336.
    Wolfrum, J., Healy, M., Provenzano, J.P., and Sassorossi, T., Galileo – Europe’s contribution to the next generation of GNSS, in Proc. 12th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 1999), Nashville, pp. 1381–1390, September 1999.Google Scholar
  337. 337.
    Kelley, C.W., Martoccia, D., and Pendley, R., A modernization deployment strategy to meet military and civil needs, in Proc. 12th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 1999), Nashville, pp. 1343–1352, September 1999.Google Scholar
  338. 338.
    Skidmore, T.A., Nyhus, O.K., and Wilson, A.A., An overview of the LAAS VHF data broadcast, in Proc. 12th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 1999), Nashville, pp. 671–680, September 1999.Google Scholar
  339. 339.
    Garin, L.J., Chansarkar, M., Miocinovic, S., Norman, C., and Hilgenberg, D., Wireless assisted GPS-SiRF architecture and field test results, in Proc. 12th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 1999), Nashville, pp. 489–498, September 1999.Google Scholar
  340. 340.
    Vincent, J.P., Brunel, F., Silvy, O., Bruce, A.S., Gu, X., Wippich, H.-G., Caignault, A., and Lavroff, J.-L., Testing MAGNET receiver under operational conditions, in Proc. 12th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 1999), Nashville, pp. 259–268, September 1999.Google Scholar
  341. 341.
    Hegarty, C., and Van Dierendonck, A.J., Civil GPS/WAAS signal design and interference environment at 1176.45 MHz: results of RTCA SC159 WG1 activities, in Proc. 12th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 1999), Nashville, pp. 1727–1736, September 1999.Google Scholar
  342. 342.
    Guérin, A., Chouffot, M., and Lebée, J.P., Towards a dual civil/military and secure effective approach of Global Radio-Navigation by Satellite Systems, in Proc. 12th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 1999), Nashville, pp. 1369–1376, September 1999.Google Scholar
  343. 343.
    Simpson, P., Mac Millan, A., and Chasko, A., Inverted range for GPS modernization testing, in Proc. 2000 Nat. Tech. Mtg. ION, Pacific Hotel Disneyland, Anaheim, pp. 636–645, January 2000.Google Scholar
  344. 344.
    Correia, J.T., Blanchard, J.J., and Fine, P.B., A hardware testbed for evaluation of the GPS modernization modulation candidates, in Proc. 2000 Nat. Tech. Mtg. ION, Anaheim, pp. 594–604, January 2000.Google Scholar
  345. 345.
    Gary, B.L., Tutorial on airborne microwave temperature profilers, chapter 5, Atmospheric emission sources. http://brucegary.net/MTP_tutorial/MTP_ch5.html

Copyright information

© Springer New York 2011

Authors and Affiliations

  • Ilir Progri
    • 1
  1. 1.Giftet Inc.WorcesterUSA

Personalised recommendations