Covering Maps

  • John M. LeeEmail author
Part of the Graduate Texts in Mathematics book series (GTM, volume 202)


So far, we have developed two general techniques for computing fundamental groups. The first is homotopy equivalence, which can often be used to show that one space has the same fundamental group as a simpler one. This was used, for example, in Chapter 7 to show that every contractible space is simply connected, and in Chapter 8 to show that the fundamental group of the punctured plane is infinite cyclic. The second is the Seifert–Van Kampen theorem, which was used in Chapter 10 to compute the fundamental groups of wedge sums, graphs, CW complexes, and surfaces.


Conjugacy Class Fundamental Group Covering Space Lift Property Universal Covering Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science and Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of WashingtonSeattleUSA

Personalised recommendations