Recent Advances in Bioremediation of Contaminated Soil and Water Using Microbial Surfactants

  • Achlesh Daverey
  • Kannan PakshirajanEmail author


Environmental contamination by improper disposal of industrial, ­mining, agricultural, municipal, and other residues is known worldwide. Various ­chemical-, physical-, and biological-based methods are currently being developed for removal of such pollutants from soil and water. Among these techniques, biological ­treatment, or remediation using microbes, is one of the most promising techniques, mainly because of its cost-effectiveness and essentially complete destruction of numerous pollutants. The major requirement for this technique is survivability of the degrading microorganisms during the process. Biosurfactants, particularly microbial surfactants, play a vital role in cases where pollutants are not readily bioavailable, by increasing the apparent water solubility of the pollutants, which could be achieved either by ex situ addition or in situ production of biosurfactants by microbes. However, due to wide application potential of microbial surfactants in the environmental sector, it is important to know their mechanisms of action, recent advances in bioremediation processes, and other possible applications. The goal of this chapter is, therefore, to provide an overview of the different types of microbial surfactants and sources, their roles in several bioremediation processes, and recent advances in the field.


Bioremediation Microbial surfactants Soil and water pollution Environmental pollutants Heavy metals 


  1. Arima, K., Kakinuma, A., and Tamura, G. 1968. Surfactin, a crystalline peptide lipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem. Biophys. Res. Commun. 31:488–494.CrossRefGoogle Scholar
  2. Arun, A., Raja, P. P., Arthi, R., Ananthi, M., Kumar, K. S., and Eyini, M. 2008. Polycyclic aromatic hydrocarbons (PAHs) biodegradation by Basidiomycetes fungi, Pseudomonas isolate, and their cocultures: comparative in vivo and in silico approach. Appl. Biochem. Biotechnol. 151:132–142.CrossRefGoogle Scholar
  3. Asci, Y., Nurbas, M., and Acikel, Y. S. 2007. Sorption of Cd(II) onto kaolin as a soil component and desorption of Cd(II) from kaolin using rhamnolipid biosurfactant. J. Hazard. Mater. 139:50–56.CrossRefGoogle Scholar
  4. Asci, Y., Nurbas, M., and Acikel, Y. S. 2008. Removal of zinc ions from a soil component Na-feldspar by a rhamnolipid biosurfactant. Desalination 233:361–365.CrossRefGoogle Scholar
  5. Asselineau, C. and Asselineau, J. 1978. Trehalose containing glycolipids. Prog. Chem. Fats Other Lipids 16:59–99.CrossRefGoogle Scholar
  6. Barkey, T., Navon-venezia, S., Ron, E. Z., and Rosenberg, E. 1999. Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier Alasan. Appl. Environ. Microbiol. 65 (6):2697–2702.Google Scholar
  7. Barreto, R. V. G., Hissa, D. C., Paes, F. A., Grangeiro, T. B., Nascimento, R. F., Rebelo, L. M., Craveiro, A. A., and Melo, V. V. M. 2010. New approach for petroleum hydrocarbon degradation using bacterial spores entrapped in chitosan beads. Bioresour. Technol. 101:2121–2125.CrossRefGoogle Scholar
  8. Beeba, J. L. and Umbreit, W. W. 1971. Extracellular lipid of Thiobacillus thiooxidans. J. Bacteriol. 108:612–615.Google Scholar
  9. Besson, F. and Michel, G. 1992. Biosynthesis of iturin and surfactin by Bacillus subtilis. Evidence for amino acid activating enzymes. Biotechnol. Lett. 14:1013–1018.CrossRefGoogle Scholar
  10. Cirigliano, M. C. and Carman, G. M. 1984. Isolation of a bioemulsifier from Candida lipolytica. Appl. Environ. Microbiol. 48:747–750.Google Scholar
  11. Cassidy, M. B., Lee, H., and Trevors, J. T. 1996. Environmental applications of immobilized microbial cells: a review. J. Ind. Microbiol. 16:79–101.CrossRefGoogle Scholar
  12. Cerniglia, C. E. 1992. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368.CrossRefGoogle Scholar
  13. Cooper, D. G., MacDonald, C. R. Duff, S. J. B., and Kosaric, N. 1981a. Enhanced production of surfactin from B. subtilis by continuous product removal and metal cation additions. Appl. Environ. Microbiol. 42:408–412.Google Scholar
  14. Cooper, D. G., Liss, S. N., Longay, R., and Zajic, J. E. 1981b. Surface activities of Mycobacterium and Pseudomonas. J. Ferment. Technol. 59:97–101.Google Scholar
  15. Dahrazma, B. and Mulligan, C. N. 2004. Extraction of copper from mining residues by rhamnolipids. Hazard. Toxic Radioact. Waste Manage. 8 (3):166–172.CrossRefGoogle Scholar
  16. Dahrazma, B. and Mulligan, C. N. 2007. Investigation of the removal of heavy metals from sediments using rhamnolipid in a continuous flow configuration. Chemosphere 69:705–711.CrossRefGoogle Scholar
  17. Das, P., Mukherjee, S., and Sen, R. 2009. Biosurfactant of marine origin exhibiting heavy metal remediation properties. Bioresour. Technol. 100:4887–4890.CrossRefGoogle Scholar
  18. Daverey, A. and Pakshirajan, K. 2009. Production, characterization, and properties of sophorolipids from the yeast Candida bombicola using a low-cost fermentative medium. Appl. Biochem. Biotechnol. 158 (3):663–674.CrossRefGoogle Scholar
  19. Dean, S. M., Jin, Y., Cha, D. K., Wilson, S. V., and Radosevich, M. 2001. Phenanthrene degradation in soils co-inoculated with phenanthrene-degrading and biosurfactant-producing bacteria. J. Environ. Qual. 30:1126–1133.CrossRefGoogle Scholar
  20. Desai, J. D. and Banat, I. M. 1997. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev. 61 (1):47–64.Google Scholar
  21. Fahnestock, F. M., Wickramanayake, G. B., Kratzke, K. J., and Major, W. R. 1998. Biopile Design, Operation, and Maintenance Handbook for Treating Hydrocarbon Contaminated Soil. Battelle Press, Columbus, OH.Google Scholar
  22. Flasz, A., Rocha, C. A., Mosquera, B., and Sajo, C. 1998. A comparativestudy of the toxicity of a synthetic surfactant and one produced by Pseudomonas aeruginosa ATCC 55925. Med. Sci. Res. 26:181–185.Google Scholar
  23. Forstner, U. 1995. “Land Contamination by Metals: Global Scope and Magnitude of Problem.” Metal Speciation and Contamination of Soil. Lewis Publications, Ann Arbor, MI, pp. 1–33.Google Scholar
  24. Gorin, P. A. J., Spencer, J. F. T., and Tulloch, A. P. 1961. Hydroxy fatty acid glycosides of sophorose from Torulopsis magnoliae. Can. J. Chem. 39:846–855.CrossRefGoogle Scholar
  25. Gottfried, A., Singhal, N., Elliot, R., and Swift, S. 2010. The role of salicylate and biosurfactant in inducing phenanthrene degradation in batch soil slurries. Appl. Microbiol. Biotechnol. 86:1563–1571.CrossRefGoogle Scholar
  26. Herman, D. C., Artiola, J. F., and Miller, R. M. 1995. Removal of cadmium, lead and zinc from soil by a rhamnolipid biosurfactant. Environ. Sci. Technol. 29:2280–2285.CrossRefGoogle Scholar
  27. Hirata, Y., Ryu, M., Oda, Y., Igarashi, K., Nagatsuka, A., Furuta, T., and Sugiura, M. 2009. Novel characteristics of sophorolipids, yeast glycolipid biosurfactants, as biodegradable low-foaming surfactants. J. Biosci. Bioeng. 108 (2):142–146.CrossRefGoogle Scholar
  28. Jarvis, F. G. and Johnson M. J. 1949. A glycolipid produced by Pseudomonas aeruginosa. J. Am. Chem. Soc. 71:4124–4126.CrossRefGoogle Scholar
  29. Juwarker, A. A., Dubey, K. V., Nair, A., and Singh, S. K. 2008. Bioremediation of multi-metal contaminated soil using biosurfactant – a novel approach. Indian J. Microbiol. 48:142–146.CrossRefGoogle Scholar
  30. Kanaly, R. A. and Harayama, S. 2000. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J. Bacteriol. 182 (8):2059–2067.CrossRefGoogle Scholar
  31. Kappeli, O. and Fiechter, A. 1977. Component from the cell surface of the hydrocarbon-utilizing yeast Candida tropicalis with possible relation to hydrocarbon transport. J. Bacteriol. 131:917–921.Google Scholar
  32. Kappeli, O. and Finnerty, R. 1979. Partition of alkane by an extracellular vesicle derived from hexadecane-grown Acinetobacter. J. Bacteriol. 140:707–712.Google Scholar
  33. Kim, J. and Vipulanandan, C. 2006. Removal of lead from contaminated water and clay soil using a biosurfactant. J. Environ. Eng. 132:777–786.CrossRefGoogle Scholar
  34. Konishi, M., Fukuoka, T., Morita, T., Imura, T., and Kitamoto, D. 2008. Production of new types of sophorolipids by Candida batistae. J. Oleo Sci. 57 (6):359–369.Google Scholar
  35. Kosaric, N., Gray, N. C. C., and Crains, W. I. 1987. Biotechnology and the surfactant industry. In: Surfactant Science Series, Kosaric, N., Cains, W. L., and Gray, N. C. C., (Eds), New York, Marcel Dekker, pp. 1–19.Google Scholar
  36. Kosaric, N. 2001. Biosurfactants and their application for soil bioremediation. Food Technol. Biotechnol. 39 (4):295–304.Google Scholar
  37. Kretschmer, A., Bock, H., and Wagner, F. 1982. Chemical and physical characterization of ­interfacial-active lipids from Rhodococcus erythropolis grown on n-alkane. Appl. Environ. Microbiol. 44:864–870.Google Scholar
  38. Krivobok, S., Guiraud, P., Seigle-Murandi, F., and Steiman, R. 1994. Production and toxicity assessment of sophorosides from Torulopsis bombicola. J. Agrc. Food Chem. 42:1247–1250.CrossRefGoogle Scholar
  39. Lai, C.-C., Huang, Y.-C., Wei, Y.-H., and Chang, J.-S. 2009. Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. J. Hazard. Mater. 167:609–614.CrossRefGoogle Scholar
  40. Lee, M. D. and Swindoll, C. M. 1993. Bioventing for in situ remediation. Hydrol. Sci. J. 38:273–282.CrossRefGoogle Scholar
  41. Leeson, A. and Hinchee, R. E. 1997. Soil Bioventing: Principles and Practice. CRC Press LLC, Boca Raton, FL.Google Scholar
  42. Li, Z. Y., Lang, S., Wagner, F., Witte, L., and Wray, V. 1984. Formation and identification of interfacial-active glycolipids from resting microbial cells of Arthrobacter sp. and potential use in tertiary oil recovery. Appl. Environ. Microbiol. 48:610–617.Google Scholar
  43. Lo, C-M. and Ju, L-K. 2009. Sophorolipids-induced cellulase production in cocultures of Hypocrea jecorina Rut C30 and Candida bombicola. Enzyme Microb. Technol. 44:107–111.CrossRefGoogle Scholar
  44. Mahanty, B., Pakshirajan, K., and Dasu, V. V. 2009. Pyrene encapsulated alginate bead type for sustained release in biodegradation: preparation and characteristics. Polycycl. Aromat. Compd. 29 (1):56–73.CrossRefGoogle Scholar
  45. Marcoux, J. 2000. Optimization of high-molecular-weight polycyclic aromatic hydrocarbons’ degradation in a two-liquid-phase bioreactor. J. Appl. Microbiol. 88:655–662.CrossRefGoogle Scholar
  46. Mata-Sandoval, J. C., Karns, J., and Torrents, A. 2001. Influence of rhamnolipids and Triton X-100 on the biodegradation of three pesticides in aqueous and soil slurries. J. Agric. Food Chem. 49:3296–3303.CrossRefGoogle Scholar
  47. Miller, R. M. and Zhang, Y. 1997. Measurement of biosurfactant-enhanced solubilization and biodegradation of hydrocarbons. Methods Biotechnol. 2:59–66.Google Scholar
  48. Mohan, P. K., Nakhla, G., and Yanful, E. K. 2006. Biokinetics of biodegradabilityof surfactants under aerobic, anoxic and anaerobic conditions. Water Res. 40:533–540.CrossRefGoogle Scholar
  49. Mukherjee, S., Das, P., and Sen, R. 2006. Towards commercial production of microbial surfactants. Trends Biotechnol. 24:509–515.CrossRefGoogle Scholar
  50. Mulligan, C. N., Yong, R. N., and Gibbs, B. F. 1999a. On the use of biosurfactants for the removal of heavy metals from oil-contaminated soil. Environ. Prog. 18:50–54.CrossRefGoogle Scholar
  51. Mulligan, C. N., Yong, R. N., and Gibbs, B. F. 1999b. Metal removal from contaminated soil and sediments by the biosurfactant surfactin. Environ Sci. Technol. 33:3812–3820.CrossRefGoogle Scholar
  52. Mulligan, C. N. 2005. Environmental applications for biosurfactants. Environ. Poll.133:183–198.CrossRefGoogle Scholar
  53. Mulligan, C. N. and Wang, S. 2006. Remediation of a heavy metal-contaminated soil by a rhamnolipid foam. Eng. Geol. 85:75–81.CrossRefGoogle Scholar
  54. Muthusamy, K., Gopalakrishnan, S., Ravi, T. K., and Sivachidambaram, P. 2008. Biosurfactants: properties, commercial production and application. Curr. Sci. 94 (6):736–747.Google Scholar
  55. Neilson, J. W., Artiola, J. F., and Maier, R. M. 2003. Characterization of lead removal from ­contaminated soils by non-toxic soil-washing agents. J. Environ. Qual. 32:899–908.CrossRefGoogle Scholar
  56. Oberbremer, A., Muller-Hurtig, R., and Wagner, F. 1990. Effect of the addition of microbial ­surfactants on hydrocarbon degradation in a soil population in a stirred reactor. App. Microbiol. Biotechnol. 32:485–489.CrossRefGoogle Scholar
  57. Ochoa-Loza, F. 1998. Physico-chemical factors affecting rhamnolipids biosurfactant application for removal of metal contaminants from soil. PhD dissertation, University of Arizona, Tucson.Google Scholar
  58. Otto, R. T., Daniel, H.-J., Pekin, G., Muller-Decker, K., Furstenberger, G., Reuss, M., and Syldatk, C. 1999. Production of sophorolipids from whey. Appl. Microbiol. Biotechnol. 52:495–501.CrossRefGoogle Scholar
  59. Parkinson, M. 1985. Bio-surfactants. Biotechnol. Adv. 3:65–83.CrossRefGoogle Scholar
  60. Poremba, K., Gunkel, W., Lang, S., and Wagner, F. 1991. Toxicity testing of synthetic and biogenic surfactants on marine microorganisms. Environ. Toxicol. Water Qual. 6:157–163.CrossRefGoogle Scholar
  61. Rahman, P. K. S. M. and Gakpe, E. 2008. Production, characterization and applications of biosurfactants – review. Biotechnology 7:360–370.CrossRefGoogle Scholar
  62. Rahman, K. S. M., Rahman, T. J., Kourkoutoas, Y., Petsas, I., Marchant, R., and Banat, I. M. 2003. Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresour. Technol. 90:159–168.CrossRefGoogle Scholar
  63. Robinson, K. G., Ghosh, M. M., and Shi, Z. 1996. Mineralization enhancement of non-aqueous phase and soil-bound PCB using biosurfactant. Water Sci. Technol. 34:303–309.Google Scholar
  64. Ron, E. Z. and Rosenberg, E. 2002. Biosurfactants and oil remediation. Curr. Opin. Biotechnol. 13:249–252.CrossRefGoogle Scholar
  65. Rosenberg, E., Zuckerberg, A., Rubinovitz, C., and Gutnick, D. L. 1979. Emulsifier Arthrobacter RAG-1: isolation and emulsifying properties. Appl. Environ. Microbiol. 37:402–408.Google Scholar
  66. Schippers, C., Gebner, K., Muller, T., and Scheper, T. 2000. Microbial degradation of ­phenanthrene by addition of a sophorolipid mixture. J. Biotechnol. 83:189–198.CrossRefGoogle Scholar
  67. Sharma, S., Singh, P., Raj, M., Chadha, B. S., and Saini, H. S. 2009. Aqueous phase partitioning of hexachlorocyclohexane (HCH) isomers by biosurfactant produced by Pseudomonas aeruginosa WH-2. J. Hazard. Mater. 171:1178–1182.CrossRefGoogle Scholar
  68. Shimakata, T., Iwaki, M., and Kusaka, T. 1984. In vitro synthesis of mycolic acids by the fluffy layer fraction of Bacterionema matruchotii. Arch. Biochem. Biophys. 229:329–339.CrossRefGoogle Scholar
  69. Shreve, G. S., Inguva, S., and Gunnan, S. 1995. Rhamnolipid biosurfactant enhancement of hexadecane biodegradation by Pseudomonas aeruginosa. Mol. Mar. Biol. Biotechnol. 4:331–337.Google Scholar
  70. Shuttleworth, K. L. and Cerniglia, C. E. 1995. Environmental aspects of PAH biodegradation. Appl. Biochem. Biotechnol. 54:291–302.CrossRefGoogle Scholar
  71. Singh, P. B., Sharma, S., Saini, H. S., and Chadha, B. S. 2009. Biosurfactant production by Pseudomonas sp. and its role in aqueous phase partitioning and biodegradation of chlorpyrifos. Lett. Appl. Microbiol. 49:378–383.CrossRefGoogle Scholar
  72. Sponza, D. T. and Gok, O. 2010. Effect of rhamnolipid on the aerobic removal of polyaromatic hydrocarbons (PAHs) and COD components from petrochemical wastewater. Bioresour. Technol. 101:914–924.CrossRefGoogle Scholar
  73. Tan, H., Champion, J. T., Artiola, J. F., Brusseau, M. L., and Miller, R. M. 1994. Complexation of cadmium by a rhamnolipid biosurfactant. Environ Sci. Technol. 28:2402–2406.CrossRefGoogle Scholar
  74. Thaniyavaran, J., Chianguthai, T., Sangvanich, P., Roongsawang, N., Washiao, K., Morikawa, M., and Thaniyavaran, S. 2008. Production of sophorolipid biosurfactant by Pichia anomala. Biosci. Biotechnol. Biochem. 72 (8):2061–2068.CrossRefGoogle Scholar
  75. Van Bogaert, I. N. A., Saerens, K., Muynck, C. D., Develter, D., Soetaert, W., and Vandamme, E. J. 2007. Microbial production and application of sophorolipids. Appl. Microbiol. Biotechnol. 76:23–34.CrossRefGoogle Scholar
  76. Vidali, M. 2001. Bioremediation. An overview. Pure Appl. Chem. 73 (7):1163–1172.CrossRefGoogle Scholar
  77. Vipulanandan, C. and Ren, X. 2000. Enhanced solubility and biodegradation of naphthalene with biosurfactant. J. Environ. Eng. 126:629–634.Google Scholar
  78. Velikonja, J. and Kosaric, N. 1993. Biosurfactants in food applications. In: Biosurfactants: Production, Properties and Applications, Kosaric, N., (Ed), New York, Marcel Dekker, pp. 419–446.Google Scholar
  79. Wattanaphon, H. T., Kerdsin, A., Thammacharoen, C., Sangvanich, P., and Vangnai, A. S. 2009. A biosurfactant from Burkholderia cenocepacia BSP3 and its enhancement of pesticide solubilization. J. Appl. Microbiol. 105:416–423.CrossRefGoogle Scholar
  80. Whang, L. M., Liu, P.-W., Ma, C.-C., and Cheng, S. S. 2008. Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. J. Hazard. Mater. 151:155–163.CrossRefGoogle Scholar
  81. Wirthensohn, T., Schoeberl, P., Ghosh, U., and Fuchs, W. 2009. Pilot plant experiences using physical and biological treatment steps for the remediation of groundwater from a former MGP site. J. Hazard. Mater. 163:43–52.CrossRefGoogle Scholar
  82. Zeng, G., Fu, H., Zhong, H., Yuan, X., Fu, M., Wang, W., and Huang, G. 2007. Co-degradation with glucose of four surfactants, CTAB, Triton X-100, SDS and Rhamnolipid, in liquid culture media and compost matrix. Biodegradation 18:303–310.CrossRefGoogle Scholar
  83. Zhang, Y. and Miller, R. M. 1992. Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). App. Environ. Microbiol. 58:3276–3282.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of BiotechnologyIndian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations