Molecular Strategies: Detection of Foodborne Bacterial Pathogens

  • Javed Ahamad KhanEmail author
  • R. S. Rathore
  • Iqbal Ahmad
  • Shaheen Khan


Conventional methods of pathogen identification have often depended on the identification of disease symptoms, isolation, and culturing of the organisms, and identification by morphology and biochemical tests. The major limitations of these culture-based morphological approaches, however, are the reliance on the ability of the organism to be cultured, the time-consuming nature, and requirement of extensive taxonomic expertise. The use of molecular methods can circumvent many of these shortcomings. Accordingly, there have been significant developments in the area of molecular detection of bacterial pathogens in the last 3 decades. We report here a brief overview of the molecular detection methods applicable to microbes from food.


Polymerase Chain Reaction Amplify Fragment Length Polymorphism Multiplex Polymerase Chain Reaction Foodborne Pathogen Amplify Fragment Length Polymorphism Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams, M.R. and Moss, M.O. 1995. Food microbiology. Cambridge: The Royal Society of Chemistry.Google Scholar
  2. Aitman, T.J. 2001. DNA microarrays in medical practice. BMJ 323: 611–615.CrossRefGoogle Scholar
  3. Anon 2005. Foodborne
  4. Arbeit, R.D. 1995. Laboratory procedures for the epidemiologic analysis of microorganisms. In P.R. Murray, E.J. Baron, M.A. Pfaller, F.C. Tenover and R.H. Yolken (eds.), Manual of clinical microbiology, 6th edn, pp. 190–208. Washington, DC: American Society of Microbiology.Google Scholar
  5. Bej, K., Mahbubani, M. H., Boyce, M. J. and Atlas, R. M. 1994. Detection of Salmonella spp. in oysters by PCR. Appl. Environ. Microbiol. 60: 368–373.Google Scholar
  6. Belgrader, P., Bennett, W., Hadley, D., Long, G., Mariella, R., Milanovich, F., Nasarabadi, S., Nelson, W. 1998. Rapid pathogen detection using a microchip PCR array instrument. Clin. Chem. 44: 2191–2194.Google Scholar
  7. Berganza, J., Olabarria, G., Garcia, R., Verdoy, D., Rebollo, A. and Arana, S. 2007. DNA microdevice for electrochemical detection of Escherichia coli 0157:H7 molecular markers. Biosens. Bioelectron. 22: 2132–2137.CrossRefGoogle Scholar
  8. Bingen, E.H., Denamur, E. and Elion. J. 1994. Use of ribotyping in epidemiological surveillance of nosocomial outbreaks. Clin. Microbiol. Rev. 7: 311–327.Google Scholar
  9. Blears, M.J., De Grandis, S.A., Lee, H. and Trevors, J.T. 1998. Amplified fragment length polymorphism (AFLP): review of the procedure and its applications. J. Ind. Microbiol. Biotechnol. 21: 99–114.CrossRefGoogle Scholar
  10. Brosch, R., Bruchrieser, C. and Rocourt, J. 1991. Subtyping Listeria monocytogenes serovar-4b by use of low frequency-cleavage restriction endonucleases and pulsed field gel electrophoresis. Res. Microbiol. 142: 667–675.CrossRefGoogle Scholar
  11. Buzby, J.C. and Roberts, T. 1997. Economic costs and trade impacts of microbial foodborne illness. World Health Stat. Q. 50 (1–2): 57–66.Google Scholar
  12. Byun, S.K., Jung, S.C. and Yoo, H.S. 2001. Random amplification of polymorphic DNA for tracing and epidemiology of Listeria monocytogenes isolated from meat. Int. J. Food Microbiol. 69: 227–235.CrossRefGoogle Scholar
  13. Call, D.R. 2005. Challenges and opportunities for pathogen detections using DNA microarrays. Crit. Rev. Microbiol. 31: 91–99.CrossRefGoogle Scholar
  14. Call, D.R., Brockman, F.J. and Chandler, D.P. 2001. Detecting and genotyping Escherichia coli O157:H7 using multiplexed PCR and nucleic acid microarrays. Int. J. Food Microbiol. 67: 71–80.CrossRefGoogle Scholar
  15. Call, D.R., Borucki, M.K. and Loge, F. J. 2003. Detection of bacterial pathogens in environmental samples using DNA microarrays. J. Microbiol. Methods 53: 235–243.CrossRefGoogle Scholar
  16. Cerniglia, C.E., Wang, R.F. and Cao, W.W. 1997. A universal protocol for PCR detection of 13 species of food borne pathogens in foods. J. Appl. Microbiol. 83: 727 – 736.CrossRefGoogle Scholar
  17. Chiang, Y.C., Yang, C.Y., Li, C., Ho, Y.C., Lin, C.K. and Tsen, H.Y. 2006. Identification of Bacillus spp., Escherichia coli, Salmonella spp., Staphylococcus spp., and Vibrio spp. with 16S ribosomal DNA-based oligonucleotide array hybridization. Int. J. Food Microbiol. 107: 131–137.CrossRefGoogle Scholar
  18. Daniel, M.C. and Astruc, D. 2004. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev.104: 293–346.CrossRefGoogle Scholar
  19. Demarco, D.R. and Lim, D.V. 2002. Detection of Escherichia coli O157:H7 in 10- and 25-gram ground beef samples with an evanescent-wave biosensor with silica and polystyrene waveguides. J. Food Prot. 65: 596–602.Google Scholar
  20. Duffy, G., Kilbride, B., Fitzmaurice, J. and Sheridan, J.J. 2001. Routine diagnostics tests for food borne pathogens. Dublin: Agriculture and Food Development authority. ISBN 1 84170 189 0.Google Scholar
  21. Eom, H.S., Hwang, B.H., Kim, D.H., Lee, I.B., Kim, Y.H. and Cha. H.J. 2007. Multiple detection of food-borne pathogenic bacteria using a novel 16S rDNA-based oligonucleotide signature chip. Biosens. Bioelectron. 22: 845–853.CrossRefGoogle Scholar
  22. Feng, P. 1992. Commercial assay systems for detecting food-borne Salmonella: a review. J. Food Prot.55: 927–934.Google Scholar
  23. Finlay, P. L. and Falkow, S. (1988). Virulence factors associated with Salmonella species. Microbiol. Sci. 5: 324–328.Google Scholar
  24. Fratamico, P.M., Strobaugh, T.P., Medina, M.B. and Gehring, A.G. 1997. A surface plasmon resonance biosensor for real-time immunologic detection of Escherichia coli O157:H7, new techniques in the analysis of foods, pp. 103–112. Washington DC: American Chemical Society.Google Scholar
  25. Garaizer, J., Rementeria, A. and Porwollik, S. 2006. DNA microarray technology: a new tool for the epidemiological typing of bacterial pathogens. FEMS Immunol. Med. Microbiol. 47: 178–189.CrossRefGoogle Scholar
  26. Gehring, A.G., Brewster, J.D., Irwin, P.L, Tu, S.I. and Van Houten, L.J. 1999. 1-Naphtyl phosphate as an enzymatic substrate for enzyme-linked immunomagnetic electrochemistry. J. Electroanal. Chem. 469: 27–33.CrossRefGoogle Scholar
  27. Gerner-Smidt, P., Hise, K., Kincaid, J., Hunter, S., Rolando, S., Hyytiä-Trees, E., Ribot, E.M., Swaminathan, B. and the PulseNet Taskforce. 2006. PulseNet USA: A five-year update. Foodborne Pathog. Dis. 3: 9–19.CrossRefGoogle Scholar
  28. Hamza, A.A., El Gaali, E.I. and Mahdi, A.A. 2009. Use of the RAPD-PCR fingerprinting and API system for clustering lactic acid bacteria isolated from traditional Sudanese sour milk (Roab). Afr. J. Biotechnol. 8(15): 3399–3404, 1684–5315.Google Scholar
  29. Higuchi, R., Dollinger, G., Walsh, P.S. and Griffith, R. 1992. Simultaneous amplification and detection of specific DNA sequences. Biotechnology 10:413–417. Scholar
  30. Higuchi, R., Fockler, C., Dollinger, G. and Watson, R. 1993. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology 11: 1026–1030.CrossRefGoogle Scholar
  31. Hu, Y., Zhang, Q. and Meitzler, J.C. 1999. Rapid and sensitive detection of Escherichia coli O157:H7 in bovine faeces by a multiplex PCR. J. Appl. Microbiol. 87: 867–876.CrossRefGoogle Scholar
  32. Huixiang, L. and Rothberg, L.J. 2004. Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. J. Am. Chem. Soc. 126: 10958–10961.CrossRefGoogle Scholar
  33. Islam, M.S., Hasan, M.K., Miah, M.A., Sur, G.C., Elsenstien, A., Venkatesan, M., Sack, R.B. and Albert, M.J. 1993. Use of the polymerase chain reaction and fluorescent-antibody methods for detecting viable but nonculturable Shigella dysenteriae type 1 in laboratory microcosms. Appl. Environ. Microbiol. 59(2): 536–540.Google Scholar
  34. Jackson, P.J., Hill, K.K., Laker, M.T., Ticknor, L.O. and Keim, P. 1999. Genetic comparison of Bacillus anthracis and its close relatives using amplified fragment length polymorphism and polymerase chain reaction analysis. J. Appl. Microbiol. 87: 263–269.CrossRefGoogle Scholar
  35. Janssen, P., Coopman, R., Huys, G., Swings, J., Bleeker, M., Vos, P., Zabeau, M. and Kersters, K. 1996. Evaluation of the DNA fingerprinting method AFLP as a new tool in bacterial taxonomy. Microbiology 142: 1881–1893.CrossRefGoogle Scholar
  36. Johnson, P.E., Lund, M.L., Shorthill, R.W., Swanson, J.E. and Kellogg, J.L. 2001. Real time biodetection of individual pathogenic microorganisms in food and water. Biomedical Sciences Institute, 37:191–96.CrossRefGoogle Scholar
  37. Jureen, R., Harthug, S., Sørnes, S., Digranes, A., Willems, R.J.L. and Langeland, N. 2004. Comparative analysis of amplified fragment length polymorphism and pulsed-field gel ­electrophoresis in a hospital outbreak and subsequent endemicity of ampicillin-resistant Enterococcus faecium. FEMS Immunol. Med. Microbiol. 40: 33–39.CrossRefGoogle Scholar
  38. Kabadjova, P., Dousset, X., Le Cam, V. and Prevost, H. 2002. Differentiation of closely related Carnobacterium food isolates based on 16S-23S ribosomal DNA intergenic spacer region polymorphism. Appl. Environ. Microbiol. 68: 5358–5366.CrossRefGoogle Scholar
  39. Keer, J.T. and Birch, L. 2003. Molecular methods for the assessment of bacterial viability. J. Microbiol. Methods 53: 175–183.CrossRefGoogle Scholar
  40. Kim, H.J., Park, S.H., Lee, T.H., Nahm, B.H., Kim, Y.R. and Yeong, H. 2008. Microarray detection of food-borne pathogens using specific probes prepared by comparative genomics. Biosens. Bioelectron. 24 (2): 238–246.CrossRefGoogle Scholar
  41. Koeleman, J.G., Parlevliet, G.A., Dijkshoorn, L., Savelkoul, P.H. and Vandenbroucke-Grauls, C.M. 1997. Nosocomial outbreak of multiresistant Acinetobacter baumannii on a surgical ward: epidemiology and risk factors for acquisition. J. Hosp. Infect. 37: 113–123.CrossRefGoogle Scholar
  42. Koeleman, J.G.M., Stoof, J., Biesmans, D.J., Savelkoul, P. H. M. and Vandenbrouke-Grauls, C.M.J.E. 1998. Comparison of amplified ribosomal DNA restriction analysis, random fragment polymorphic DNA analysis, and amplified fragment length polymorphism fingerprinting for identification of Acinetobacter genomic species and typing of Acinetobacter baumannii. J. Clin. Microbiol. 36: 2522–2529.Google Scholar
  43. Kopp, M.U., De Mello, A.J. and Manz, A. 1998. Chemical amplification: continuous-flow PCR on a chip. Science 280: 1046–1048.CrossRefGoogle Scholar
  44. Kostrzynska, M. and Bachand, A. 2006. Application of DNA microarray technology for detection, identification, and characterization of food-borne pathogens. Can. J. Microbiol. 52: 1–8.CrossRefGoogle Scholar
  45. Kumar, S.H., Iddya, K. and Karunasagar, I. 2002. Molecular methods for rapid and specific detection of pathogens in seafood. Aquacult. Asia 3: 34–37.Google Scholar
  46. Lee, L.G., Connell, C.R. and Bloch, W. 1993. Allelic discrimination by nick-translation PCR with fluorogenic probes. Nucleic Acids Research, 21(16):3761–3766.CrossRefGoogle Scholar
  47. Leonard, P., Hearty, S., Brennan, J., Dunne, L., Quinn, J., Chakraborty, T. and O’kennedy, R. 2003. Advances in biosensors for detection of pathogens in food and water. Enzyme Microb. Technol. 32: 3–13.CrossRefGoogle Scholar
  48. Liao, J.C., Mastali, M., Li, Y., Gau, V., Suchard, M.A., Babbitt, J., Gornbein, J., Landaw, E.M., Edward, R.B.E., Churchill, M.B.M. and Haake, D.A. 2007. Development of an advanced electrochemical DNA biosensor for bacterial pathogen detection. J. Mol. Diagn. 9(2): 158–168.CrossRefGoogle Scholar
  49. Life Technologies. 2010. TaqMan® Food Pathogen Detection Solution. http://www.TaqMan-Food-Pathogen-Detection-html.
  50. Lin, J. J., Kuo, J. and Ma, J. 1996. A PCR-based DNA fingerprinting technique: AFLP for molecular typing of bacteria. Nucleic Acids Res. 18: 3649–3650.CrossRefGoogle Scholar
  51. Livak, K.J. 2000. Quantitation of DNA/RNA Using Real-time PCR Detection. about/pcr/sds/white.html.
  52. Lu, Y.C., Chuang, Y.S., Chen, Y.Y., Shu, A.C., Hsu, H.Y., Chang, H.Y., Yew, T.R. 2008. Bacterial detection utilizing electrical conductivity. Biosens. Bioelectron., 23:1856–1861.CrossRefGoogle Scholar
  53. Lukinmaa, S., Aarnisalo, K., Suihko, M.L. and Siitonen, A. 2004. Diversity of Listeria monoocytogenes isolates of human and food origin studied by serotyping, automated ribotyping and pulsed-field gel electrophoresis. Clin. Microbiol. Infect. 10: 562–568.CrossRefGoogle Scholar
  54. Malorny, B., Paccassoni, E., Fach, P., Bunge, C., Martin, A. and Helmuth, R. 2004. Diagnostic real-time PCR for detection of Salmonella in food. Appl. Environ. Microbiol. 17 (12): 7046–7052.CrossRefGoogle Scholar
  55. Manceau, C. and Horvais, A. 1997. Assessment of genetic diversity among strains of Pseudomonas syringae by PCR-restriction fragment length polymorphism analysis of rRNA operons with special emphasis on P. syringae pv. tomato. Appl. Environ. Microbiol. 63: 498–505.Google Scholar
  56. Mead, P.S., Slutsker, L., Dietz, V., McCaig, L.F., Bresee, J.S., Shapiro, C., Griffin, P.M. and Tauxe, R.V. 1999. Food-related illness and death in the United States. Emerg. Infect. Dis. 5: 607–625.CrossRefGoogle Scholar
  57. Melles, D.C., Leeuwen, W.B.V., Snijders, S.V., Horst-Kreft, D., Peeters, J.K., Verbrugh, H.A. and Belkum, A.V. 2007. Comparison of multilocus typing (MLST), pulsed-field gel electrophoresis (PFGE), and amplified fragment length polymorphism (AFLP) for genetic typing of Staphylococcus aureus. J. Microbiol. Methods 69: 371–375.CrossRefGoogle Scholar
  58. Mueller, U. G. and Wolfenbarger, L. L. 1999. AFLP genotyping and fingerprinting. Trends Ecol. Evol. 14: 389–394.CrossRefGoogle Scholar
  59. Mumford, R., Boonham, N., Tolinson, J. and Barker, I. 2006. Advances in molecular phytodiagnostics – new solutions for old problems. Eur. J. Plant Pathol. 116: 1–19.CrossRefGoogle Scholar
  60. Newton, C.R. and Graham, A. 1997. PCR, 2nd edn. Oxford: Bios Scientific.Google Scholar
  61. Nguyen, A. V., Khan, M. I. and Lu, Z. 1994. Amplification of Salmonella chromosomal DNA using the polymerase chain reaction. Avian Dis. 38: 119–126.CrossRefGoogle Scholar
  62. Nogva, H.K., Dromtorp, S.M., Nissen, H. and Rudi, K. 2003. Ethidium Monoazide for DNA-Based differentiation of viable and dead bacteria by 5-Nuclease, PCR BioTechn. 34:804–813.CrossRefGoogle Scholar
  63. Olive, D.M. and Bean. P. 1999. Principles and applications of methods for DNA-based typing of microbial organisms. J. Clin. Microbiol. 37: 1661–1669.Google Scholar
  64. Oliver, J.D., 2005. The viable but nonculturable state in bacteria. J. Microbiol. 43: 93–100.Google Scholar
  65. Park, Y.S., Lee, S.R. and Kim, Y.G. (2006). Detection of Escherichia coli O157:H7, Salmonella spp., Staphylococcus aureus and Listeria monocytogenes in Kimchi by multiplex polymerase chain reaction (mPCR). J. Microbiol. 44 (1): 92–97.Google Scholar
  66. Poltronieri, P., De Blasi, M.D. and D’Urso, O.F. 2009. Detection of Listeria monocytogenes through real-time PCR and biosensor methods. Plant Soil Environ. 55(9): 363–369.Google Scholar
  67. Prasad, D. and Vidyarthi, A.V. 2009. DNA based methods used for characterization and detection of food borne bacterial pathogens with special consideration to recent rapid methods. Afr. J. Biotechnol. 8 (9): 1768–1775.Google Scholar
  68. Restrepo, S., Duque, M., Tohme, J. and Verdier, V. 1999. AFLP fingerprinting: an efficient technique for detecting genetic variation of Xanthomonas axonopodis pv. manihotis. Microbiology 145: 107–114.CrossRefGoogle Scholar
  69. Richter, E.R. 1993. Biosensors: applications for dairy food industry. J. Dairy Sci. 76: 3114–3117CrossRefGoogle Scholar
  70. Rodríguez-Lázaro, D., Lombard, B., Smith, H., Rzezutka, A., D’Agastino, M., Helmuth, R., Schroeter, A., Malorny, B., Miko, A., Guerra, B., Davison, J., Kobilinsky, A., Hernández, M., Berhteau, Y. and Cook, N. 2007. Trends in analytical methodology in food safety and quality: monitoring microorganisms and genetically modified organisms. Trends Food Sci. Technol. 18: 306–319.CrossRefGoogle Scholar
  71. Rudi, K., Nogva, H.K., Moen, B., Nissen, H., Bredholt, S., Moretro, T., Naterstad, K. and Holok, A. 2002. Development and application of new nucleic acid-based technologies for microbial community analyses in foods. Int. J. Food Microbiol. 78: 171–180.CrossRefGoogle Scholar
  72. Rudi, K., Moen, B., Dromtorp, S.M. and Holok, A. 2005Use of ethidium monoazide and PCR in combination for quantification of viable and dead cells in complex samples. Appl. Environ. Microbiol. 71: 1018–1024.CrossRefGoogle Scholar
  73. Sangchul, R., Kim, S.J., Lee, S.C., Chang, J.H., Kang, H.G. and Choi, J. 2009. Colorimetric detection of ssDNA in a solution. Curr. Appl. Phys. 9: 534–537.CrossRefGoogle Scholar
  74. Saunders, N.A., Harrison, T.G. Haththotuwa, A. Kachwalla, N. and Taylor, A.G. 1990. A method for typing strains of Legionella pneumophila serogroup I by analysis of restriction. J. Med. Microbiol. 31(1): 45–55.CrossRefGoogle Scholar
  75. Schlichting, C., Branger, C., Fournier, J.M., Witte, W., Boutonnier, A., Wolz, C., Goullet, P. and Döring, G. 1993. Typing of Staphylococcus aureus by pulsed-field gel electrophoresis, zymotyping, capsular typing, and phage typing: resolution of clonal relationships. J. Clin. Microbiol. 31: 227–232.Google Scholar
  76. Schwartz, D.C. and Cantor, C.R. 1984. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell. 37: 67–75.CrossRefGoogle Scholar
  77. Sergeev, N., Distler, M., Courtney, S., AL-Khadi, S.F., Volokhov, D., Chizhikov, V. and Rasooly. A. 2004. Multipathogen oligonucleotide microarray for environmental and biodefence applications. Biosens. Bioelectron. 20: 684–698.CrossRefGoogle Scholar
  78. Sergeev, N., Distler, M., Vargas, M., Chizhikov, V., Herold, K.E. and Rasooly, A. 2006. Microarray analysis of Bacillus cereus group virulence factors. J. Microbiol. Methods 65: 488–502.CrossRefGoogle Scholar
  79. Silk, T.M. and Donnelly, C.W. 1997. Increased detection of acid injured Escherichia coli O157:H7 in autoclaved apple cider by using non selective repair on trypicase soy agar. J. Food Prot. 60: 1483–1486.Google Scholar
  80. Sockett, P. N. 1991. The economic implications of human Salmonella infection. J. Appl. Bacteriol. 71: 289–295.Google Scholar
  81. Swaminathan, B., Barrett, T.J., Hunter, S.B., Tauxe, R.V. and the CDC PulseNet Task Force. 2001. PulseNet: The molecular subtyping network for foodborne bacterial disease surveillance, United States. Emerg. Infect. Dis. 7: 382–389.Google Scholar
  82. Tenover, F.C, Arbeit, R.C., Goering, R.V., Mickelsen, P.A., Murray, B.E., Persing, D.H. and Swaminathan, B. 1995. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J. Clin. Microbiol. 33: 2233–2239.Google Scholar
  83. Towner, K.J. and Cockayne, A. 1993. Molecular methods for microbial identification and typing, 1st edn, pp. 1–202. London, UK: Chapman & Hall.Google Scholar
  84. Uyttendaele, M., van Boxstael, S. and Debevre, J. 1999. PCR assay detection of the E. coli O157:H7 eae-gene and effect of the sample preparation method on PCR detection of heat-killed E. coli O157:H7 in ground beef. Int. J. Food Microbiol. 52: 85–95.CrossRefGoogle Scholar
  85. Vos, P., Hogers, R., Bleeker, M., Rijans, M., Lee, T.V., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M. and Zabeau, M. 1995. AFLP: a new technique for DNA-fingerprinting. Nucleic Acid Res. 23: 4407–4414.CrossRefGoogle Scholar
  86. Wagner, M., Maderner, A. and Brandl, E. 1996. Random amplification of polymorphic DNA for tracing and epidemiology of Listeria contamination in a cheese plant. J. Food Prot. 59: 384–389.Google Scholar
  87. Wang, X.W., Zhang, L., Jin, L.Q., Jin, M., Shen, Z.Q., An, S., Chao, F.H. and Li, J.W. 2007b. Development and application of an oligonucleotide microarray for the detection of foodborne bacterial pathogens. Appl. Microbiol. Biotechnol. 76: 225–233.CrossRefGoogle Scholar
  88. Welsh, J. and McClelland, M. 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18: 7213–7218.CrossRefGoogle Scholar
  89. Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A. and Tingey, S.V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531–6535.CrossRefGoogle Scholar
  90. Wolffs, P., Norling, B. and Radstrom, P. 2005. Risk assessment of false-positive quantitative real-time PCR results in food, due to detection of DNA originating from dead cells. J. Microbiol. Methods 60: 315–323.CrossRefGoogle Scholar
  91. Woolley, A.T., Hadley, D., Landre, P., de Mello, A.J., Mathies, R.A. and Northrup, M.A. 1996. Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device. Anal. Chem. 68: 4081–4086.CrossRefGoogle Scholar
  92. Yan, W., Chang, N. and Taylor, D.E. 1991. Pulsed-field gel electrophoresis of Campylobacter jejuni and Campylobacter coli genomic DNA and its epidemiologic application. J. Infect. Dis. 163: 1068–1072.Google Scholar
  93. Yaron, S. and Matthews, K.R. 2002. A reverse transcriptase polymerase chain reaction assay for detection of viable Escherichia coli O157:H7: investigation of specific target genes. J. Appl. Microbiol. 92: 633–640.CrossRefGoogle Scholar
  94. Zabeau, M. and Vos, P. 1993. Selective restriction fragment amplification: a general method for DNA fingerprinting. Publication 0 534 858 A1, bulletin 93/13. European Patent Office, Munich, Germany.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Javed Ahamad Khan
    • 1
    • 2
    Email author
  • R. S. Rathore
  • Iqbal Ahmad
  • Shaheen Khan
  1. 1.Division of ImmunologyIndian Veterinary Research InstituteBareillyIndia
  2. 2.Department of Agricultural MicrobiologyAligarh Muslim UniversityAligarhIndia

Personalised recommendations