Bacterial Quorum Sensing and Its Interference: Methods and Significance

  • Iqbal Ahmad
  • Mohd Sajjad Ahmad KhanEmail author
  • Fohad Mabood Husain
  • Maryam Zahin
  • Mahipal Singh


Bacteria use the language of low-molecular-weight ligands to assess their population densities in a process called quorum sensing (QS). Different types of quorum sensing pathways are present in Gram-negative and Gram-positive bacteria. Signal molecules most commonly used in Gram-negative bacteria are acyl homoserine lactones. In recent years, a substantial amount of literature and data have been available on bacterial QS. Recently, interest in modulation of quorum sensing with different approaches has increased among scientific communities. In this chapter, we provide an updated overview on bacterial QS, assays and methods for detecting signal molecules, and various approaches to inhibit AHL-based quorum sensing. Significance of QS interference by prokaryotic and eukaryotic organisms in relation to plant health and the environment is discussed here.


Quorum sensing N-acyl homoserine lactones Inhibition Reporter strains 



We are grateful to Prof. Robert JC McLean, Texas State University, USA, for his critical suggestions in the preparation of this manuscript. We would also like to acknowledge University Grants Commission, New Delhi for financial assistance in the form of a major research project.


  1. Adonizio, A. L., Downum, K., Bennett, B. C., and Mathee, K. 2006. Anti-quorum sensing activity of medicinal plants in southern Florida. J. Ethnopharmacol. 105:427–435.Google Scholar
  2. Ahmer, B. M. M. 2004. Cell-to cell signaling on Escherichia coli and Salmonella enterica. Mol. Microbiol. 52:933–945.Google Scholar
  3. Alfaro, J. F., Zhang, T., Wynn, D. P., Karschner, E. L., and Zhou, Z. S. 2004. Synthesis of LuxS inhibitors targeting bacterial cell–cell communication. Org. Lett. 6:3043–3046.Google Scholar
  4. Ansaldi, M., Marolt, D., Stebe, T., Mandic-Mulec, I., and Dubnau, D. 2002. Specific activation of the Bacillus quorum-sensing systems by isoprenylated pheromonevariants. Mol. Microbiol. 44:1561–1573.Google Scholar
  5. Asad, S., and Opal, S. M. 2008. Bench-to-bedside review: quorum sensing and the role of cell-to-cell communication during invasive bacterial infection. Crit. Care 12:236–247.Google Scholar
  6. Bassler, B. L. 2002. Small talk. Cell-to-cell communication in bacteria. Cell 109:421–424.Google Scholar
  7. Belas, M. R. 2003. The swarming phenomenon of Proteus mirabilis. ASM News 58:15–22.Google Scholar
  8. Bence, A. K., and Crooks, P. A. 2003. The mechanism of l-canavanine cytotoxicity: arginyl tRNA synthetase as a novel target for anticancer drug discovery. J. Enzyme Inhib. Med. Chem. 18:383–394.Google Scholar
  9. Bernier, S. P., Beeston, A. L., and Sokol, P. A. 2008. Detection of N-acyl homoserine lactones using a traI-luxCDABE-based biosensor as a high-throughput screening tool. BMC Biotechnol. 8:59–63.Google Scholar
  10. Beutler, B., Jiang, Z., Georgel, P., Crozat, K., Croker, B., Rutschmann, S., Du, X., and Hoebe, K. 2006. Genetic analysis of host resistance: toll-like receptor signaling and immunity at large. Annu. Rev. Immunol. 24:353–389.Google Scholar
  11. Bokhove, M., Jimenez, P. N., Quax, W. J., and Dijkstra, B. W. 2010. The quorum-quenching N-acyl homoserine lactone acylase PvdQ is an Ntn-hydrolase with an unusual substrate-binding pocket. Proc. Natl. Acad. Sci. USA 107:686–691.Google Scholar
  12. Borchardt, S. A., Allain, E. J., Michels, J. J., Stearns, G. W., Kelly, R. F., and McCoy, W. F., 2001. Reaction of acylated homoserine lactone bacterial signaling molecules with oxidized halogen antimicrobials. Appl. Environ. Microbiol. 67:3174–3179.Google Scholar
  13. Brelles-Marino, G., and Bedmar, E. J. 2001. Detection, purification and characterisation of quorum-sensing signal molecules in plant-associated bacteria. Biotechnology 91:197–209.Google Scholar
  14. Brint, J. M., and Ohman. D. E. 1995. Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. J. Bacteriol. 177:7155–7163.Google Scholar
  15. Camara, M., Daykin, M. M., and Chhabra, S. R. 1998. Detection, purification and synthesis of N-acyl homoserine lactone quorum sensing signal molecules. Methods Microbiol. 27:319–330.Google Scholar
  16. Cataldi, T. R. I., Bianco, G., Palazzo, L., and Quaranta, V. 2007. Occurrence of N-acyl-l-homoserine lactones in extracts of some gram-negative bacteria evaluated by gas chromatography-mass spectrometry. Anal. Biochem. 361:226–235.Google Scholar
  17. Cha, C., Gao, P., Chen, Y. C., Shaw, P. D., and Farrand, S. K. 1998. Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Mol. Plant Microbe Interact. 11:1119–1129.Google Scholar
  18. Chan, W. C., Coyle, B. J., and Williams, P. 2004. Virulence regulation and quorum sensing in staphylococcal infections: competitive AgrC antagonists as quorum sensing inhibitors. J. Med. Chem. 47:4633–4641.Google Scholar
  19. Chan, K. G., Wong, C. S., Yin, W. F., Sam, C. K., and Koh, C. L. 2010. Rapid degradation of N-3-oxo-acylhomoserine lactones by a Bacillus cereus isolate from Malaysian rainforest soil. Antonie Van Leeuwenhoek 98(3):299–305.Google Scholar
  20. Chapon-Herve, V., Akrim, M., Latifi, A., Williams, P., Lazdunski, A., and Bally. M. 1997. Regulation of the xcp secretion pathway by multiple quorum sensing modulons in Pseudomonas aeruginosa. Mol. Microbiol. 24:1169–1178.Google Scholar
  21. Chen, R., Zhou, Z., Cao, Y., Bai, Y., Yao, B. 2010. High yield expression of an AHL-lactonase from Bacillus sp. B546 in Pichia pastoris and its application to reduce Aeromonas hydrophila mortality in aquaculture. Microb. Cell Fact. 9:39Google Scholar
  22. Cheung, A. L., Koomey, J. M., Butler, C. A., Projan, S. J., and Fischetti, V. A. 1992. Regulation of exoprotein expression in Staphylococcus aureus by a locus (sar) distinct from agr. Proc. Natl. Acad. Sci. USA 89:6462–6466.Google Scholar
  23. Chhabra, S. R., Stead, P., Bainton, N. J., Salmond, G. P. C., Stewart, G. S. A. B., Williams, P., and Bycroft. B. W. 1993. Autoregulation of carbapenem biosynthesis in Erwinia carotovora ATCC 39048 by analogues of N-3-(oxohexanoyl)-l-homoserine lactone. J. Antibiot. 46:441–454.Google Scholar
  24. Chhabra, S. R., Philipp, B., Eberl, L., Givskov, M., Williams, P., and Camara, M. 2005. Extracellular communication in bacteria. In Chemistry of pheromones and other semiochemicals, ed. S. Schulz, pp. 279–315. Berlin/Heidelberger, Germany: Springer.Google Scholar
  25. Choudhary, S., and Dannert, C. S. 2010. Applications of quorum sensing in biotechnology. Appl. Microbiol. Biotechnol. 86:1267–1279.Google Scholar
  26. Chun, C. K., Ozer, E. A., Welsh, M. J., Zabner, J., and Greenberg, E. P. 2004. Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. Proc. Natl. Acad. Sci. USA 101:3587–3590.Google Scholar
  27. Clarke, M., Hughes, D. T., Zhu, C., Boedeker, E. C., and Sperandio, V. 2006. Then QseC sensor kinase: a bacterial adrenergic receptor. Proc. Natl. Acad. Sci. USA 103:10420–10425.Google Scholar
  28. Cooley, M., Chhabra, S. R., and Williams, P. 2008. N-acylhomoserine lactone-mediated quorum sensing: a twist in the tail and a blow for host immunity. Chem. Biol. 15:1141–1147.Google Scholar
  29. de Kievit, T. R., and Iglewski, B. H. 2000. Bacterial quorum sensing in pathogenic relationships. Infect. Immun. 68:4839–4849.Google Scholar
  30. de Kievit, T., Seed, P. C., Nezezon, J., Passador, L., and Iglewski, B. H. (1999). RsaL, a novel repressor of virulence gene expression in Pseudomonas aeruginosa. J. Bacteriol. 181:2175–2184.Google Scholar
  31. de Nys, R., Steinberg, P., Rogers, C. N., Charlton, T. S., and Duncan, M. W. 1996. Quantitative variation of secondary metabolites in the sea hare Apylsia parvula and its host plant, Delisea pulchra. Mar. Ecol. Prog. Ser. 130:135–146.Google Scholar
  32. Debler, E. W., Kaufmann, G. F., Kirchdoerfer, R. N., Mee, J. M., Janda, K. D., and Wilson, I. A. 2007. Crystal structures of a quorum-quenching antibody. J. Mol. Biol. 368:1392–402.Google Scholar
  33. Defoirdt, T., Boon, N., Bossier, P., and Verstraete, W. 2004. Disruption of bacterial quorum sensing: an unexplored strategy to fight infections in aquaculture. Aquaculture 240:69–88.Google Scholar
  34. Defoirdt, T., Miyamoto, C. M., Wood, T. K., Meighen, E. A., Sorgeloos, P., Verstraete, W., and Bossier, P. 2007. The natural furanone (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone disrupts quorum sensing-regulated gene expression in Vibrio harveyi by decreasing the DNA-binding activity of the transcriptional regulator protein luxR. Environ. Microbiol. 9:2486–2495.Google Scholar
  35. Defoirdt, T., Boon, N., and Bossier, P. 2010. Can bacteria evolve resistance to quorum sensing disruption? PLoS Pathog. 6(7):e1000989.Google Scholar
  36. Diggle, S. P., Winzer, K., Lazdunski, A., Williams, P., and Camara, M. 2002. Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression. J. Bacteriol. 184:2576–2586.Google Scholar
  37. Donabedian, H. 2003. Quorum sensing and its relevance to infectious diseases. J. Infect. 46:207–214.Google Scholar
  38. Dong, Y. H., and Zhang, L. H. 2005. Quorum sensing and quorum quenching enzymes. J. Microbiol. 43:101–109.Google Scholar
  39. Dong, Y. H., Xu, J. L., Li, X. Z., and Zhang, L. H. 2000. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc. Natl. Acad. Sci. USA 97:3526–3531.Google Scholar
  40. Dong, Y. H., Wang, L. H., Xu, J. L., Zhang, H. B., Zhang, X. F., and Zhang, L. H. 2001. Quenching quorum sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411:813–817.Google Scholar
  41. Dong, Y. H., Zhang, X. F., Xu, J. L., and Zhang, L. H. 2004. Insecticidal Bacillus thuringiensis silences Erwinia carotovora virulence by a new form of microbial, signal interference. Appl. Environ. Microbiol. 70:954–960.Google Scholar
  42. Dong, Y. H., Zhang, X. F., Soo, H. M., Greenberg, E. P., and Zhang, L. H. 2005. The two-­component response regulator PprB modulates quorum-sensing signal production and global gene expression in Pseudomonas aeruginosa. Mol. Microbiol. 56:1287–1301.Google Scholar
  43. Duan, K., and Surette, M. G. 2007. Environmental regulation of Pseudomonas aeruginosa PAO1 Las and Rhl quorum-sensing systems. J. Bacteriol. 189:4287–4236.Google Scholar
  44. Egland, K. A., and Greenberg, E. P. 1999. Quorum sensing in Vibrio fischeri: elements of the luxI promoter. Mol. Microbiol. 31:1197–1204.Google Scholar
  45. Emmert, E. A. B., Milner, J. L., Lee, J. C., Pulvermacher, K. L., Olivares, H. A., Clardy, J., and Handelsman, J. 1998. Effect of canavanine from alfalfa seeds on the population biology of Bacillus cereus. Appl. Environ. Microbiol. 64:4683–4688.Google Scholar
  46. Farah, C., Vera, M., Morin, D., Haras, D., Jerez, C. A., and Guiliani, N. 2005. Evidence for a functional quorum sensing type AI-1 system in the extremophilic bacterium Acidithiobacillus ferrooxidans. Appl. Environ. Microbiol. 71:7033–7040.Google Scholar
  47. Farrand, S. K., Qin, Y., and Oger, P. 2002. Quorum-sensing system of Agrobacterium plasmids: analysis and utility. Methods Enzymol. 358:452–484.Google Scholar
  48. Fenical, W. 1997. New pharmaceuticals from marine organisms. Trends Biotechnol. 15:339–341.Google Scholar
  49. Francesco, B., Marian, G., and Natalio, K. 2007. Quorum sensing P systems. Theor. Comp. Sci. 371:20–33.Google Scholar
  50. Fray, R. G., Throup, J. P., Daykin, M., Wallace, A., Williams, P., Stewart, G. S., and Grierson, D. 1999. Plants genetically modified to produce N-acylhomoserine lactones communicate with bacteria. Nat. Biotechnol. 17:1017–1020.Google Scholar
  51. Fuqua, C., and Winans, S. C. 1996. Conserved cis-acting promoter elements are required for density-dependent transcription of Agrobacterium tumefaciens conjugal transfer genes. J. Bacteriol. 178:435–440.Google Scholar
  52. Fuqua, W. C., Winans, S. C., and Greenberg, E. P. 1994. Quorum sensing in bacteria: the LuxR-LuxI family of cell density responsive transcriptional regulators. J. Bacteriol. 176:269–275.Google Scholar
  53. Gao, M., Teplitski, M., Robinson, J. B., and Bauer, W. D. 2003. Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol. Plant Microbe Interact. 16:827–834.Google Scholar
  54. Givskov, M., de Nys, R., Manefield, M., Gram, L., Maximilien, R., Eberl, L., Molin, S., Steinberg, P. D., and Kejelleberg, S. 1996. Eukaryotic interference with homoserine lactone-mediated prokaryotic signaling. J. Bacteriol. 178:6618–6622.Google Scholar
  55. Goddu, R. F., Leblanc, N. F., and Wright, C. M. 1955. Spectrophotometric determination of festers and anhydrides by hydroxamic acid reaction. Anal. Chem. 27:1251–1255.Google Scholar
  56. Gonzalez, J. E., and Keshavan, N. D. 2006. Messing with bacterial quorum sensing. Microbiol. Mol. Biol. Rev. 70:859–875.Google Scholar
  57. Gonzalez, J. E., and Marketon, M. M. 2003. Quorum sensing in nitrogen-fixing rhizobia. Microbiol. Mol. Biol. Rev. 67:574–592.Google Scholar
  58. Guoliang, J., and Mingxia, S. U. 2009. Quorum-sensing of bacteria and its application. J. Ocean Univ. China (Oceanic and Coastal Sea Research) 8:385–391.Google Scholar
  59. Haas, W., Shepard, B. D., and Gilmore, M. S. 2002. Two-component regulator of Enterococcus faecalis cytolysin responds to quorum-sensing autoinduction. Nature 415:84–87.Google Scholar
  60. Hamoen, L. W., Venema, G., and Kuipers, O. P. 2003. Controlling competence in Bacillus subtilis: shared use of regulators. Microbiology 149:9–17.Google Scholar
  61. Havarstein, L. S., Coomaraswamy, G., and Morrison, D. A. 1995. An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc. Natl. Acad. Sci. USA 92:1140–1144.Google Scholar
  62. Hentzer, M., Wu, H., Andersen, J. B., Riedel, K., Rasmussen, T. B., Bagge, N., Kumar, N., Schembri, M. A., Song, Z., Kristoffersen, P., Manefield, M., Costerton, J. W., Molin, S., Eberl, L., Steinberg, P., Kjelleberg, S., Hoiby, N., and Givskov, M. 2003. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J. 22:3803–3815.Google Scholar
  63. Hermann, C. 2007. Variability of host–pathogen interaction. J. Endotoxin Res. 13:199–218.Google Scholar
  64. Hoang, T. T., and Schweizer, H. P. 1999. Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (FabI): a target for the antimicrobial triclosan and its role in acylated homoserine lactone synthesis. J. Bacteriol. 181:5489–5497.Google Scholar
  65. Hodgkinson, J., Bowden, S. D., Galloway, W. R. J. D., Spring, D. R., and Welch M. 2010. Structure-activity analysis of the Pseudomonas quinolone signal molecule. J. Bacteriol. 192:3833–3837.Google Scholar
  66. Horng, Y. T., Deng, S. C., Daykin, M., Soo, P. C., Wei, J. R., Luh, K. T., Ho, S. W., Swift, S., Lai, H. C., and Williams, P. 2002. The LuxR family protein SpnR functions as a negative regulator of N-acylhomoserine lactone-dependent quorum sensing in Serratia marcescens. Mol. Microbiol. 45:1655–1671.Google Scholar
  67. Ji, G., Beavis, R. C., and. Novick. R. P. 1995. Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. Proc. Natl. Acad. Sci. USA 92:12055–12059.Google Scholar
  68. Jiang, G., and Su, M. 2009. Quorum-sensing of bacteria and its application. J. Ocean Univ. China (English Edition) 8:385–391.Google Scholar
  69. Juhas, M., Eberl, L., and Tummler, B. 2005. Quorum sensing: the power of cooperation in the world of Pseudomonas. Environ. Microbiol. 7:459–471.Google Scholar
  70. Kawaguchi, T., Chen, Y. P., Norman, R. S., and Decho, W. A. 2008. Rapid screening of quorum-sensing signal n-acyl homoserine lactones by an in vitro cell-free assay. Appl. Environ. Microbiol. 74:3667–3671.Google Scholar
  71. Kelly, R. C., Bolitho, M. E., Higgins, D. A., Lu, W., Ng, W. L., Jeffrey, P. D., Rabinowitz, J. D., Semmelhack, M. F., Hughson, F. M., and Bassler, B. L. 2009. The Vibrio cholerae ­quorum-sensing autoinducer CAI-1: analysis of the biosynthetic enzyme CqsA. Nat. Chem. Biol. 5:891–895.Google Scholar
  72. Kendall, M. M., and Sperandio, V. 2007. Quorum sensing by enteric pathogens. Curr. Opin. Gastroenterol. 23:10–15.Google Scholar
  73. Kendall, M. M., Rasko, D. A., and Sperandio, V. 2007. Global effects of the cellto-cell signaling molecules autoinducer-2, autoinducer-3, and epinephrine in a luxS mutant of enterohemorrhagic Escherichia coli. Infect. Immun. 75:4875–4884.Google Scholar
  74. Khan, S. R., Mavrodi, D. V., Jog, G. J., Suga, H., Thomashow, L. S., and Farrand, S. K. 2005. Activation of the phz operon of Pseudomonas fluorescens 2-79 requires the LuxR homolog PhzR, N-(3-OHHexanoyl)-l-homoserine lactone produced by the LuxI homolog PhzI, and a cis-acting phz box. J. Bacteriol. 187:6517–6527.Google Scholar
  75. Khan, M. S. A, Zahin, M., Hasan, S., Husain, F. M., and Ahmad, I. 2009. Inhibition of quorum sensing regulated bacterial functions by plant essential oils with special reference to clove oil. Lett. Appl. Microbiol. 49:354–360.Google Scholar
  76. Kline, T., Bowman, J., Iglewski, B. H., de Kievit, T., Kakai, Y., and Passador, L. 1999. Novel synthetic analogs of the Pseudomonas autoinducer. Bioorg. Med. Chem. Lett. 9:3447–3452.Google Scholar
  77. Latifi, A., Foglino, M., Tanaka, K., Williams, P., and Lazdunski, A. 1996. A hierarchical quorum sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhlR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol. Microbiol. 21:1137–1146.Google Scholar
  78. Leadbetter, J. R., and Greenberg, E. P. 2000. Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J. Bacteriol. 182:6921–6926.Google Scholar
  79. Lee, S. J., Park, S. Y., Lee, J. J., Yum, D. Y., Koo, B. T., and Lee, J. K., 2002. Genes encoding the N-acyl homoserine lactone-degrading enzyme are widespread in many subspecies of Bacillus thuringiensis. Appl. Environ. Microbiol. 68:3919–3924.Google Scholar
  80. Lesic, B., Lepine, F., Déziel, E., Zhang, J., Zhang, Q., Padfield, K., Castonguay, M. H., Milot, S., Stachel, S., Tzika, A. A., Tompkins, R. G., and Rhme, L. G. 2007. Inhibitors of pathogen intercellular signals as selective anti-infective compounds. PLoS Pathog. 3:e126.Google Scholar
  81. Lewenza, S., Conway, B., Greenberg, E. P., and Sokol. P. A. 1999. Quorum sensing in Burkholderia cepacia: identification of the LuxRI homologs CepRI. J. Bacteriol. 181:748–756.Google Scholar
  82. Li, M., Villaruz, A. E., Vadyvaloo, V., Sturdevant, D. E., and Otto, M. 2008. AI-2-dependent gene regulation in Staphylococcus epidermidis. BMC Microbiol. 8:4.Google Scholar
  83. Li, X., Han, Y., Yang, Q., and Zhang, X. H. 2010. Detection of quorum sensing signal molecules and mutation of luxS gene in Vibrio ichthyoenteri. Res. Microbiol. 161(1):51–57.Google Scholar
  84. Lin, Y. H., Xu, J. L., Hu, J., Wang, L. H., Ong, S. L., Leadbetter, J. R., and Zhang, L. H. 2003. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol. Microbiol. 47:849–860.Google Scholar
  85. Lindsay, A., and Ahmer, B. M., 2005. Effect of sdiA on biosensors of N-acylhomoserine lactones. J. Bacteriol. 187:5054–5058.Google Scholar
  86. Ling, E. A., Ellison, M. L., and Pseci, E. C. 2009. A novel plasmid for detection of N-acyl homoserine lactones. Plasmid 62:16–21.Google Scholar
  87. Lipasova, V. A., Atamova, E. E., Veselova, M. A., Tarasova, N. N., and Khmel. I. A. 2009. Expression of gene for n-acyl-homoserine lactonase aiia affects properties of rhizospheric strain Pseudomonas chlororaphis 449. Russ. J. Genet. 45:30–34.Google Scholar
  88. Lithgow, J. K., Wilkinson, A., Hardman, A., Rodelas, B., Wisniewski-Dye, F., Williams, P., and Downie, J. A. 2000. The regulatory locus cinRI in Rhizobium leguminosarum controls a network of quorum-sensing loci. Mol. Microbiol. 37:81–97.Google Scholar
  89. Littler, M. M., and Littler, D. S. 1995. Impact of CLOD pathogen on Pacific coral reefs. Science 267:1356–1360.Google Scholar
  90. Lukas, F., Gorenc, G., and Kopency, J. 2008. Detection of possible AI-2-mediated quorum sensing system in commensal intestinal bacteria. Folia Microbiol. 53:221–224.Google Scholar
  91. Manefield, M., and Turner, S. L. 2002. Quorum sensing in context: out of molecular biology and into microbial ecology. Microbiology 148:3762–3764.Google Scholar
  92. Manefield, M., de Nys, R., Kumar, N., Read, R., Givskov, M., Steinberg, P., and Kejelleberg, S. 1999. Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor ­protein. Microbiology 145:283–291.Google Scholar
  93. Manefield, M., Harris, L., Rice, S. A., de Nys, R., and Kjelleberg, S. 2000. Inhibition of luminescence and virulence in the black tiger prawn (Penaeus monodon) pathogen Vibrio harveyi by intercellular signal antagonists. Appl. Environ. Microbiol. 66:2079–2084.Google Scholar
  94. Manefield, M., Welch, M., Givskov, M., Salmond, G. P., and Kjelleberg, S. 2001. Halogenated furanones from the red alga, Delisea pulchra, inhibit carbapenem antibiotic synthesis and exoenzyme virulence factor production in the phytopathogen Erwinia carotovora. FEMS Microbiol. Lett. 205:131–138.Google Scholar
  95. Martinelli, D., Grossmann, G., Sequin, U., Brandl, H., and Bachofen, H. 2004. Effects of natural and chemically synthesized furanones on quorum sensing in Chromobacterium violaceum. BMC Microbiol. 4:25.Google Scholar
  96. McClean, K. H., Winson, M. K., Fish, L., Taylor, A., Chabra, S. R., Camara, M., Daykin, M., Lamb, J. H., Swift, S., Bycroft, B. W., Stewart, G. S. A. B., and Williams, P.1997. Quorum sensing and Chromobacterium violaceum: exploitation of violacin production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143:3703–3711.Google Scholar
  97. McGowan, S., Sebaihia, M., Jones, S., Yu, S., Bainton, N., Chan, P. F., Bycroft, B. W., Stewart, G. S. A. B., Salmond, G. P. C., and Williams. P. 1995. Carbapenem antibiotic production in Erwinia carotovora is regulated by CarR, a homologue of the LuxR transcriptional activator. Microbiology 141:541–550.Google Scholar
  98. McLean, R. J. C., Pierson, L. S., III, and Fuqua, C. 2004. A simple screening protocol for the identification of quorum signal antagonist. J. Microbiol. Methods 58:351–360.Google Scholar
  99. Miller, M. B., and Bassler, B. L. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55:165–199.Google Scholar
  100. Molina, L., Constantinescu, F., Michel, L., Reimmann, C., Duffy, B., and Defago, G., 2003. Degradation of pathogen quorum-sensing molecules by soil bacteria: a preventive and curative biological control mechanism. FEMS Microbiol. Ecol. 45:71–81.Google Scholar
  101. Nealson, K. H., Platt, T., and Hastings, W. 1970. Cellular control of the synthesis and activity of the bacterial bioluminescent system. J. Bacteriol. 104:313–322.Google Scholar
  102. Ni, N., Chou, H. T., Wang, J., Li, M., Lu, C. D., Tai, P. C., and Wang, B. 2008. Identification of boronic acids as antagonists of bacterial quorum sensing in Vibrio harveyi. Biochem. Biophys. Res. Commun. 369:590–594.Google Scholar
  103. Ni, N., Li, M., Wang, J., and Wang, B. 2009. Inhibitors and antagonists of bacterial quorum sensing. Med. Res. Rev. 29:65–124.Google Scholar
  104. Niu, C., Afre, S., and Gilbert, E. S. 2006. Subinhibitory concentrations of cinnamaldehyde interfere with quorum sensing. Lett. Appl. Microbiol. 43:489–494.Google Scholar
  105. Okada, M., Sato, I., Cho, S. J., Iwata, H., Nishio, T., Dubnau, D., and Sakagami, Y. 2005. Structure of the Bacillus subtilis quorum-sensing peptide pheromone ComX. Nat. Chem. Biol. 1:23–24.Google Scholar
  106. Olsen, J. A., Severinsen, R., Rasmussen, T. B., Hentzer, M., Givskov, M., and Nielsen, J. 2002. Synthesis of new 3- and 4-substituted analogues of acyl homoserine lactone quorum sensing autoinducers. Bioorg. Med. Chem. Lett. 12:325–328.Google Scholar
  107. Park, J., Jagasia, R., Kaufmann, G. F., Mathison, J. C., Ruiz, D. I., Moss, J. A., Meijler, M. M., Ulevitch, R. J., and Janda, K. D. 2007. Infection control by antibody disruption of bacterial quorum sensing signaling. Chem. Biol. 14:1119–1127.Google Scholar
  108. Parsek, M. R., and Greenberg, E. P. 2005. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol. 13:27–33.Google Scholar
  109. Parsek, M. R., Val, D. L., Hanzelka, B. L., Cronan, J. R., Jr., and Greenberg, E. P. 1999. Acyl homoserine-lactone quorum-sensing signal generation. Proc. Natl. Acad. Sci. USA 96:4360–4365.Google Scholar
  110. Pearson, J. P., Gray, K. M., Passador, L., Tucker, K. D., Eberhard, A., Iglewski, B. H., and Greenberg, E. P. 1994. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc. Natl. Acad. Sci. USA 91:197–201.Google Scholar
  111. Pearson, J. P., Pesci, E. C., and Iglewski, B. H. 1997. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J. Bacteriol. 179:5756–5767.Google Scholar
  112. Pinto, U. M., Costa, E. D., Mantovani, H. C., and Vanetti, M. C. D. 2010. The proteolytic activity of Pseudomonas fluorescens 07a isolated from milk is not regulated by quorum sensing signals. Braz. J. Microbiol. 41:91–96.Google Scholar
  113. Piper, K. R., von Bodman, B. S., and Farrand, S. K. 1993. Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction. Nature 362:448–450.Google Scholar
  114. Pirhonen, M., Flego, D., Heikinheimo, R., and Palva, E. T. 1993. A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. EMBO J. 12:2467–2476.Google Scholar
  115. Quadri, L. E. 2002. Regulation of antimicrobial peptide production by autoinducer-mediated quorum sensing in lactic acid bacteria. Antonie Van Leeuwenhoek 82:133–145.Google Scholar
  116. Rampioni, G., Bertani, I., Zennaro, E., Polticelli, F., Venturi, V., and Leoni, L. 2006. The quorum-sensing negative regulator RsaL of Pseudomonas aeruginosa binds to the lasI promoter. J. Bacteriol. 188:815–819.Google Scholar
  117. Rasmussen, T. B., and Givskov, M. 2006. Quorum sensing inhibitors: a bargain of effects. Microbiology 152:895–904.Google Scholar
  118. Rasmussen, T. B., Manefield, M., Andersen, J. B., Eberl, L., Anthoni, U., Christophersen, C., Steinberg, P., Kejelleberg, S., and Givskov, M. 2000. How Delisea pulchra furanones affect quorum sensing and swarming motility in Serratia liquefaciens MG1. Microbiology 146:3237–3244.Google Scholar
  119. Ren, D., Sims, J. J., and Wood, T. K. 2001. Inhibition of biofilm formation and swarming of Escherichia coli by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. Environ. Microbiol. 3:731–736.Google Scholar
  120. Reverchon, S., Chantegrel, B., Deshayes, C., Doutheau, A., and Cotte-Pattat, N. 2002. New synthetic analogues of N-acyl homoserine lactones as agonists or antagonists of transcriptional regulators involved in bacterial quorum sensing. Bioorg. Med. Chem. Lett. 12:1153–1157.Google Scholar
  121. Rice, S. A., Givskov, M., Steinberg, P., and Kjelleberg, S. 1999. Bacterial signals and antagonists: the interaction between bacteria and higher organisms. J. Mol. Microbiol. Biotechnol. 1:23–31.Google Scholar
  122. Savka, M. A., Le, P. T., and Burr, T. J. 2010. LasR receptor for detection of long-chain quorum-sensing signals: identification of N-acyl-homoserine lactones encoded by the avsI locus of Agrobacterium vitis. Curr. Microbiol.  10.1007/s00284-010-9679-1.Google Scholar
  123. Schaefer, A. L., Hanzelka, B. L., Eberhard, A., and Greenberg, E. P. 1996. Quorum sensing in Vibrio fischeri: probing autoinducer-LuxR interactions with autoinducer analogs. J. Bacteriol. 178:2897–2901.Google Scholar
  124. Schaefer, A. L., Hanzelka, B. L., Parsek, M. R., and Greenberg, E. P. 2000. Detection, purification, and structural elucidation of the acylhomoserine lactone inducer of Vibrio fischeri luminescence and other related molecules. Methods Enzymol. 305:288–301.Google Scholar
  125. Shaw, P. D., Ping, G., Daly, S. L., Cha, C., Cronan, J. E., Jr., Rinehart, K. L., and Farrand, S. K. 1997. Detection and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc. Natl. Acad. Sci. USA 94:6036–6041.Google Scholar
  126. Shiner, E. K., Rumbaugh, K. P., and Williams, S. C. 2005. Inter-kingdom signaling: deciphering the language of acyl homoserine lactones. FEMS Microbiol. Rev. 29:935–947.Google Scholar
  127. Singh, V., Shi, W., Almo, S. C., Evans, G. B., Furneaux, R. H., Tyler, P. C., Painter, G. F., Lenz, D. H., Mee, S., Zheng, R., and Schramm, V. L. 2006. Structure and inhibition of a quorum sensing target from Streptococcus pneumoniae. Biochemistry 45:12929–12941.Google Scholar
  128. Sintim, H. O., Smith, J. A., Wang, J., Nakayama, S., and Yan, L. 2010. Paradigm shift in discovering next-generation anti-infective agents: targeting quorum sensing, c-di-GMP signaling and biofilm formation in bacteria with small molecules. Future Med. Chem. 2:1005–1035.Google Scholar
  129. Smith, K. M., Bu, Y., and Suga, H. 2003. Induction and inhibition of Pseudomonas aeruginosa quorum sensing by synthetic autoinducer analogs. Chem. Biol. 10:81–89.Google Scholar
  130. Steindler, L., and Venturi, V. 2007. Detection of quorum-sensing N-acyl homoserine lactone signal molecules by bacterial biosensors. FEMS Microbiol. Lett. 266:1–9.Google Scholar
  131. Tait, K., Joint, I., Daykin, M., Milton, D. L., Williams, P., and Camara. M. 2005. Disruption of quorum sensing in seawater abolishes attraction of zoospores of the green alga Ulva to bacterial biofilms. Environ. Microbiol. 7:229–240.Google Scholar
  132. Tao, C., Guo-Liang, Q., Xiao-Li, Y., Jun-Yi, M., Bai-Shi H., and Feng-Quan, L. 2009. Detection of a quorum sensing signal molecule of Acidovorax avenae subsp. citrulli and its regulation of pathogenicity. Chin. J. Agric. Biotechnol. 6:49–53.Google Scholar
  133. Teplitski, M., Robinson, J. B., and Bauer, W. D. 2000. Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol. Plant Microbe Interact. 13:637–648.Google Scholar
  134. Teplitski, M., Chen, H., Rajamani, S., Gao, M., Merighi, M., Sayre, R. T., Robinson, J. B., Rolfe, B. G., and Bauer, W. D. 2004. Chlamydomonas reinhardtii secretes compounds that mimic bacterial signals and interfere with quorum sensing regulation in bacteria. Plant Physiol. 134:137–146.Google Scholar
  135. Thoendel, M., and Horswill, A. R. 2010. Chapter 4 – biosynthesis of peptide signals in Gram-positive bacteria. Adv. Appl. Microbiol. 71:91–112.Google Scholar
  136. Thomas, G. L., Bohner, C. M., Williams, H. E., Walsh, C. M., Ladlow, M., Welch, M., Bryant, C. E., and Spring, D. R. 2006. Immunomodulatory effects of Pseudomonas aeruginosa quorum ­sensing small molecule probes on mammalian macrophages. Mol. Biosyst. 2:132–137.Google Scholar
  137. Tomasz, A. 1965. A control of the competent state in Pneumococcus by a hormone-like cell product: an example of a new type of regulatory mechanism in bacteria. Nature 208:155–159.Google Scholar
  138. Van Houdt, R., Moons, P., Aertsen, A., Jansen, A., Vanoirbeek, K., Daykin, M., Williams, P., and Michiels, C. W. 2007. Characterization of a luxI/luxR-type quorum sensing system and N-acyl-homoserine lactone-dependent regulation of exo-enzyme and antibacterial component production in Serratia plymuthica RVH1. Res. Microbiol. 158:150–158.Google Scholar
  139. Vanjildorj, E., Song, S. Y., Yang, Z. H., Choi, J. E., Noh, Y. S., Park, S., Lim, W. J., Cho, K. M., Yun, H. D., and Lim, Y. P. 2009. Enhancement of tolerance to soft rot disease in the transgenic Chinese cabbage (Brassica rapa L. ssp. pekinensis) inbred line, Kenshin. Plant Cell Rep. 28:1581–1591.Google Scholar
  140. Wagner, V. E., Gillis, R. J., and Iglewski, B. H. 2004. Transcriptome analysis of quorum-sensing regulation and virulence factor expression in Pseudomonas aeruginosa. Vaccine 22:S15–S20.Google Scholar
  141. Wagner-Dobler, I., Thiel, V., Eberl, L., Allgaier, M., Bodor, A., Meyer, S., Ebner, S., Hennig, A., Pukall, R., and Schulz, S. 2005. Discovery of complex mixtures of novel long-chain quorum sensing signals in free-living and host-associated marine alphaproteobacteria. Chembiochem 6:2195–2206.Google Scholar
  142. Walters, K. M., and Sperandio, V. 2006. Autoinducer 3 and epinephrine signaling in the kinetics of locus of enterocyte effacement gene expression in enterohemorrhagic Escherichia coli. Infect. Immun. 74:5445–5455.Google Scholar
  143. Wang, J. H., Quan, C. S., Qi, X. H., Li, X., and Fan, S. D. 2010. Determination of diketopiperazines of Burkholderia cepacia CF-66 by gas chromatographymass spectrometry. Anal. Bioanal. Chem. 396:1773–1779.Google Scholar
  144. Welch, M., Todd, D. E., Whitehead, N. A., McGowan, S. J., Bycroft, B. W., and Salmond, G. P. 2000. N-acyl homoserine lactone binding to the CarR receptor determines quorum-sensing specificity in Erwinia. EMBO J. 19:631–641.Google Scholar
  145. Wen, Z. T., and Burne, R. A. 2004. LuxS-mediated signaling in Streptococcus mutans is involved in regulation of acid and oxidative stress tolerance and biofilm formation. J. Bacteriol. 186:2682–2691.Google Scholar
  146. Whitehead, N. A., Barnard, A. M., Slater, H., Simpson, N. J., and Salmond, G. P. 2001. Quorum-sensing in Gram-negative bacteria. FEMS Microbiol. Rev. 25:365–404.Google Scholar
  147. Williams, P. 2007. Quorum sensing, communication and cross kingdom signaling in the bacterial world. Microbiology 153:3923–3928.Google Scholar
  148. Winson, M. K., Camara, M., Latifi, A., Foglino, M., Chhabra, S. R., Daykin, M., Bally, M., Chapon, V., Salmond, G. P., and Bycroft, B. W. 1995. Multiple N-acyl-l-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 92:9427–9431.Google Scholar
  149. Winson, M. K., Swift, S., Fish, L., Throup, J. P., Jørgensen, F., Chhabra, S. R., Bycroft, B. W., Williams, P., and Stewart, G. S. A. B. 1998. Construction of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone mediated quorum sensing. FEMS Microbiol. Lett. 163:185–192.Google Scholar
  150. Winzer, K., Falconer, C., Garber, N. C., Diggle, S. P., Camara, M., and Williams, P. 2000. The Pseudomonas aeruginosa lectins PA-IL and PA-IIL are controlled by quorum sensing and by RpoS. J. Bacteriol. 182:6401–6411.Google Scholar
  151. Wright, J. S., III, Lyon, G. J., George, E. A., Muir, T. W., and Novick, R. P. 2004. Hydrophobic interactions drive ligand-receptor recognition for activation and inhibition of staphylococcal quorum sensing. Proc. Natl. Acad. Sci. USA 101:16168–16173.Google Scholar
  152. Wu, H., Song, Z., Hentzer, M., Andersen, J. B., Molin, S., Givskov, M., and Hoiby, N. 2004. Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. J. Antimicrob. Chemother. 53:1054–1061.Google Scholar
  153. Xu, F., Byun, T., Dussen, H. J., and Duke, K. R., 2003. Degradation of N-acylhomoserine lactones, the bacterial quorum-sensing molecules, by acylase. J. Biotechnol. 101:89–96.Google Scholar
  154. Yan, L., Allen, M. S., Simpson, M. L., Sayler, G. S., and Cox, C. D. 2007. Direct quantification of N-(3-oxo-hexanoyl)-l-homoserine lactone in culture supernatant using a whole-cell bioreporter. J. Microbiol. Methods 68:40–45.Google Scholar
  155. Yang, Y. H., Lee, T. H., Kim, J. H., Kim, E. J., Joo, H. S., Lee, C. S., and Kim, B. G. 2006. High-throughput detection method of quorum-sensing molecules by colorimetry and its applications. Anal. Biochem. 356:297–299.Google Scholar
  156. Yates, E. A., Philipp, B., Buckley, C., Atkinson, S., Chhabra, S. R., Sockett, R. E., Goldner, M., Dessaux, Y., Camara, M., Smith, H., and Williams P. 2002. N-acylhomoserine lactones undergo lactonolysis in a pH, temperature, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect. Immun. 70:5635–5646.Google Scholar
  157. Zhang, L. H. 2003. Quorum quenching and proactive host defense. Trends Plant Sci. 8:238–244.Google Scholar
  158. Zhang, L. H., and Dong, Y. H. 2004. Quorum sensing and signal interference: diverse implications. Mol. Microbiol. 53:1563–1571.Google Scholar
  159. Zhang, L., Murphy, P. J., Kerr, A., and Tate, M. E. 1993. Agrobacterium conjugation and gene regulation by N-acyl-l-homoserine lactones. Nature 362:446–448.Google Scholar
  160. Zhao, L., Xue, T., Shang, F., Sun, H., and Sun, B. 2010. Staphylococcus aureus AI-2 quorum sensing associates with the KdpDE two-component system to regulate capsular polysaccharide synthesis and virulence. Infect. Immun. 78(8):3506–3515.Google Scholar
  161. Zhu, J., and Winans, S. C. 2001. The quorum-sensing transcriptional regulator TraR requires its cognate signaling ligand for protein folding, protease resistance, and dimerization. Proc. Natl. Acad. Sci. USA 98:1507–1512.Google Scholar
  162. Zhu, J., Beaber, J. W., More, M. I., Fuqua, C., Eberhard, A., and Winans, S. C. 1998. Analogs of the autoinducer 3-oxooctanoyl-homoserine lactone strongly inhibit activity of the TraR protein of Agrobacterium tumefaciens. J. Bacteriol. 180:5398–5405.Google Scholar
  163. Zhu, J., Chai, Y., Zhong, Z., Li, S., and Winans, S. C. 2003. Agrobacterium bioassay strain for ultrasensitive detection of N-acylhomoserine lactone-type quorum-sensing molecules: detection of autoinducers in Mesorhizobium huakuii. Appl. Environ. Microbiol. 69:6949–6953.Google Scholar
  164. Zhu, J., Patel, R., and Pei, D. 2004. Catalytic mechanism of S-ribosylhomocysteinase (LuxS): stereochemical course and kinetic isotope effect of proton transfer reactions. Biochemistry 43:10166–10172.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Iqbal Ahmad
  • Mohd Sajjad Ahmad Khan
    • 1
    Email author
  • Fohad Mabood Husain
  • Maryam Zahin
  • Mahipal Singh
  1. 1.Department of Agricultural Microbiology, Faculty of Agricultural SciencesAligarh Muslim UniversityAligarhIndia

Personalised recommendations