Microbes and Microbial Technology pp 101-126 | Cite as
Microbially Synthesized Nanoparticles: Scope and Applications
Abstract
The critical need for development of reliable and eco-friendly processes for synthesis of metallic nanoparticles has recently been realized in the field of nanotechnology. Increasing awareness toward green chemistry and biological processes has elicited a desire to explore environmentally friendly approaches for the synthesis of nanoparticles as a safer alternative to physical and chemical methods, which involves harsh conditions and use of hazardous chemicals. Therefore, the use of natural resources, including bacteria and fungi, has been exploited for cost-effective and environmentally nonhazardous nanoparticle synthesis. The rich microbial diversity of bacteria and fungi contains the innate potential for the synthesis of nanoparticles and may be regarded as potential biofactories. In fact, microbial synthesis of nanoparticles has emerged as an important branch of nanobiotechnology. The synthesis of inorganic materials by biological systems occurs through remarkable processes at ambient temperature and pressures and neutral pH. Among the various biological systems, bacteria are relatively easy to manipulate genetically, whereas fungi have an advantage of easy handling during downstream processing and large-scale production. In spite of the successes achieved in biological synthesis of nanoparticles, there is still a need to improve the rate of synthesis and monodispersity of nanoparticles. Also, microbial cultivation and downstream processing techniques must be improved, and more efficient methods should be developed. Furthermore, in order to exploit the system to its maximum potential, it is essential to understand the biochemical and molecular mechanisms involved in nanoparticle synthesis. Delineation of specific genomic pathways and characterization of gene products involved in biosynthesis of nanoparticles are required. The underlying molecular mechanisms that mediate microbial synthesis of nanoparticles will help in understanding the molecular switches and factors necessary to control the size and shape, as well as crystallinity of nanoparticles. Indeed, biological systems are still relatively unexplored, and therefore, the opportunities are open for budding nanobiotechnologists to utilize nonpathogenic biological systems for metallic nanoparticle synthesis with commercial perspectives.
References
- Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M. I., Kumar, R., and Sastry, M. 2002. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B Biointerfaces 28: 313–318.Google Scholar
- Ahmad, A., Senapati, S., Khan, M. I., Kumar, R., and Sastry, M. 2003a. Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete Thermomonospora sp. Langmuir 19: 3550–3553.Google Scholar
- Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M. I., Kumar, R., and Sastry, M. 2003b. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B Biointerfaces 28: 313–318.Google Scholar
- Ahmad, A., Senapati, S., Khan, M. I., Kumar, R., and Sastry, M. 2005. Extra-/intracellular, biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium. J. Biomed. Nanotechnol. 1: 47–53.Google Scholar
- Alivisatos, P. 2004. The use of nanocrystals in biological detection. Nat. Biotechnol. 22: 47–52.Google Scholar
- Ayyad, O., Rohas, D. M., Sole, J. O., Romero, P. G. 2010. From silver nanoparticles to nanostructures through matrix chemistry. J. Nanopart. Res. 12: 337–345.Google Scholar
- Bai, H. J., Zhang, Z. M., Guo, Y., and Yang, G. E. 2009. Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloids Surf. B Biointerfaces 70: 142–146.Google Scholar
- Balaji, D. S., Basavaraja, S., Deshpande, R., Mahesh, B. D., Prabhakar, B. K., and Venkataraman, A. 2009. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf. B Biointerfaces 68: 88–92.Google Scholar
- Bansal, V., Rautaray, D., Ahmad, A., and Sastry, M. 2004. Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J. Mater. Chem. 14: 3303–3305.Google Scholar
- Bansal, V., Sanyal, A., Rautaray, D., Ahmad, A., and Sastry, M. 2005. Bioleaching of sand by the fungus Fusarium oxysporum as a means of producing extracellular silica nanoparticles. Adv. Mater. 17: 889–892.Google Scholar
- Bansal, V., Poddar, P., Ahmad, A., and Sastry, M. 2006. Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. J. Am. Chem. Soc. 128: 11958–11963.Google Scholar
- Bao, C. Y., Jin, M., Lu, R., Zhang, T. R., and Zhao, Y. Y. 2003. Preparation of Au nanoparticles in the presence of low generational poly (amidoamine) dentrimer with surface hydroxyl groups. Mater. Chem. Phys. 81: 160–165.Google Scholar
- Barud, H. S., Barrios, C., Regiani, T., Marques, R. F. C., Verelst, M., Dexpert-Ghys, J., et al. 2008. Self-supported silver nanoparticles containing bacterial cellulose membranes. Mat. Sci. Eng. C 28: 515–518.Google Scholar
- Basavaraja, S., Balaji, S. D., Lagashetty, A., Rajasab, A. H., and Venkataraman, A. 2008. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mat. Res. Bull. 43: 1164–1170.Google Scholar
- Bazylinski, D. A., Frankel, R. B., and Jannasch, H. W. 1988. Anaerobic magnetite production by a marine magnetotactic bacterium. Nature 334: 518–519.Google Scholar
- Bazylinski, D. A., Heywood, B. R., Mann, S., and Frankel, R. B. 1993. Fe3O4 and FeS4 in a bacterium. Nature 366: 218.Google Scholar
- Beveridge, T. J., and Murray, R. G. E. 1980. Sites of metal deposition in the cell wall of Bacillus subtilis. J. Bacteriol. 141: 876–887.Google Scholar
- Bhainsa, K. C., and D’Souza, S. F. 2006. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigates. Colloids Surf. B Biointerfaces 47: 160–164.Google Scholar
- Bharde, A., Rautaray, D., Bansal, V., Ahmad, A., Sarkar, I., Yusuf, S. M., Sanyal, M., and Sastry, M. 2006. Extracellular biosynthesis of magnetite using fungi. Small 2: 135–141.Google Scholar
- Bharde, A., Wani, A., Shouche, Y., Pattayil, A., Bhagavatula, L., and Sastry, M. 2005. Bacterial aerobic synthesis of nanocrystalline magnetite. J. Am. Chem. Soc. 127: 9326–9327.Google Scholar
- Birla, S. S., Tiwari, V. V., Gade, A. K., Ingle, A. P., Yadav, A. P., and Rai, M. K. 2009. Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett. Appl. Microbiol. 48: 173–179.Google Scholar
- Blakemore, R. P., Maratea, D., and Wolfe, R. S. 1979. Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. J. Bacteriol. 140: 720–729.Google Scholar
- Brayner, R., Barberousse, H., Hemadi, M., Djedjat, C., Yéprémian, C., Coradin, T., Livage, J., Fiévet, F., Couté, A. 2007. Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. J. Nanosci. Nanotechnol. 7(8): 2696–2708Google Scholar
- Brierley, J. A. 1990. In: Biosorption of Heavy Metals (Volesky, B., Ed.), Boca Raton, USA, p. 305.Google Scholar
- Bruchez, M. Jr., Moronne, M., Gin, P, Weiss, S., and Alivisatos, A. P. 1998. Semiconductor nanocrystals as fluorescent biological labels. Science 281: 2013–2016.Google Scholar
- Chang, C. C., Lin, C. K., Chan, C. C., Hsu, C. S., and Chen, C. Y. 2006. Photocatalytic properties of nanocrystalline TiO2 thin film with Ag additions. Thin Solid Films 494: 274–278.Google Scholar
- Chen, J. C., Lin, Z. H., and Ma, X. X. 2003. Evidence of the production of silver nanoparticles via pretreatment of Phoma sp.3.2883 with silver nitrate. Lett. Appl. Microbiol. 37: 105–108.Google Scholar
- Chen, Q., Shen, X., and Gao, H. 2006. One-step synthesis of silver-poly(4- vinylpyridine) hybrid microgels by -irradiation and surfactant-free emulsion polymerization, the photoluminescence characteristics. Colloids Surf. A Physicochem. Eng. Asp. 275: 45–49.Google Scholar
- Courrol, L. C., Silva, F. R. D. O., and Gomes, L. 2007. A simple method to synthesize silver nanoparticles by photo-reduction. Colloids Surf. A Physicochem. Eng. Asp. 305: 54–57.Google Scholar
- Cui, D., and Gao, H. 2003. Advance and prospects of bionanomaterials. Biotechnol. Prog. 19: 683–692.Google Scholar
- Dameron, C. T., Reese, R. N., Mehra, R. K., Kortan, A. R., Carroll, P. J., Steigerwald, M. L., Brus, L. E., and Winge, D. R. 1989. Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338: 596–597.Google Scholar
- Daniel, M.-C., and Astruc, D. 2004. Gold nanoparticles: assembly, supramolecular chemistry, quantum-sizerelated properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104: 293–346.Google Scholar
- Darnall, D. W., Greene, B., Henzel, M. J., Hosea, M., McPherson, R. A., Sneddon, J., and Alexander, M. D. 1986. Selective recovery of gold and other metal ions from an algal biomass. Environ. Sci. Technol. 20: 206–208.Google Scholar
- Dastjerdi, R., Mojtahedi, M. R. M., and Shoshtari, A. M. 2009. Comparing the effect of three processing methods for modification of filament yarns with inorganic nanocomposite filler and their bioactivity against Staphylococcus aureus. Macromol. Res. 17: 378–387.Google Scholar
- Dastjerdi, R., Mojtahedi, M. R. M., Shoshtari, A. M., and Khosroshahi, A. 2010. Investigating the production and properties of Ag/TiO2/PP antibacterial nanocomposite filament yarns. J. Textile Inst. 101: 204–213.Google Scholar
- De Windt, D., Aelterman, P., and Verstraete, W. 2005. Bioreductive deposition of palladium(0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ. Microbiol. 7: 314–325.Google Scholar
- Dickson, D. P. E. 1999. Nanostructured magnetism in living systems. J. Magn. Mater. 203: 46–49.Google Scholar
- Dimitrov, D. S. 2006. Interactions of antibody-conjugated nanoparticles with biological surfaces. Colloids Surf. A Physicochem. Eng. Asp. 282–283: 8–10.Google Scholar
- Du, L., Jiang, H., Xiaohua, H., and Wang, E. 2007. Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of haemoglobin. Electrochem. Commun. 9: 1165–1170.Google Scholar
- Dufes, C., Keith, W. N., Bilsland, A., Proutski, I., Uchegbu, I. F., and Schatzlein, A. G. 2005. Synthetic anticancer gene medicine exploits intrinsic antitumor activity of cationic vector to cure established tumors. Cancer Res. 65: 8079–8084.Google Scholar
- Durán, N., Marcato, P. D., Souza, G. I. H. D., Alves, O. L., and Esposito, E. 2007. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J. Biomed. Nanotechnol. 3: 203–208.Google Scholar
- Fayaz, M., Balaji, K., Girilal, M., Yadav, R., Kalaichelvan, P. T., and Venketesan, R. 2010. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine 6: 103–109.Google Scholar
- Fendler, J. H., Ed. 1998. Nanoparticles and Nanostructured Films. Wiley-VCH, Weinheim.Google Scholar
- Feng, Y., Yu, Y., Wang, Y., and Lin, X. 2007. Biosorption and bioreduction of trivalent aurum by photosynthetic bacteria Rhodobacter capsulatus. Curr. Microbiol. 55: 402–408.Google Scholar
- Frilis, N., and Myers-Keith, P. 1986. Biosorption of uranium and lead by Streptomyces longwoodensis. Biotechnol. Bioeng. 28: 21–28.Google Scholar
- Gade, A. K., Bonde, P. P., Ingle, A. P., Marcato, P., Duran, N., and Rai, M. K. 2008. Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J. Biobased Mater. Bioenergy 2: 1–5.Google Scholar
- Gericke, M., and Pinches, A. 2006. Biological synthesis of metal nanoparticles. Hydrometallurgy 83: 132–140.Google Scholar
- Gerrard, T. L., Telford, J. N., and Williams, H. H. 1974. Detection of selenium deposits in Escherichia coli by electron microscopy. J. Bacteriol. 119: 1057–1060.Google Scholar
- Gopalan, B., Ito, I., Branch, C. D., Stephens, C., Roth, J. A., and Ramesh, R. 2004. Nanoparticle based systemic gene therapy for lung cancer: molecular mechanisms and strategies to suppress nanoparticle- mediated inflammatory response. Technol. Cancer Res. Treat. 3: 647–657.Google Scholar
- Gregorio, S. D., Lampis, S., and Vallini, G. 2005. Selenite precipitation by a rhizospheric strain of Stenotrophomonas sp. isolated from the root system of Astragalus bisulcatus: a biotechnological perspective. Environ. Int. 31: 233–241.Google Scholar
- Gupta, A., and Silver, S. 1998. Silver as a biocide: will resistance become a problem? Nat. Biotechnol. 16: 888.Google Scholar
- Hardman, R. 2006. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 114: 165–172.Google Scholar
- Holmes, J. D., Smith, P. R., Evans-Gowing, R., Richardson, D. J., Russell, D. A., and Sodeau, J. R. 1995. Energy-dispersive-X-ray analysis of the extracellular cadmium sulfide crystallites of Klebsiella aerogenes. Arch. Microbiol. 163: 143–147.Google Scholar
- Huang, C. P., Juang, C. P., Morehart, K., and Allen, L. 1990. The removal of Cu (II) from dilute aqueous solutions by Saccharomyces cerevisiae. Water Res. 24: 433–439.Google Scholar
- Husseiny, M. I., Abd El-Aziz, M., Badr, Y., and Mahmoud, M. A. 2007. Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim. Acta A Mol. Biomol. Spectrosc. 67: 1003–1006.Google Scholar
- Ingle, A., Rai, M., Gade, A., and Bawaskar, M. 2009. Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J. Nanopart. Res. 11: 2079–2085.Google Scholar
- Jeong, S. H., Hwang, Y. H., and Yi, S. C. 2005. Antibacterial properties of padded PP/PE nonwovens incorporating nano-sized silver colloids. J. Mater. Sci. 40: 5413–5418.Google Scholar
- Jha, A. K., Prasad, K., and Prasad, K. 2009. A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochem. Eng. J. 43: 303–306.Google Scholar
- Juzenas, P., Chen, W., Sun, Y. P., Coelho, M. A. N., Genralov, R., Genralova, N., and Christensen, L. 2008. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv. Drug Deliv. Rev. 60: 1600–1614.Google Scholar
- Kalishwaralal, K., Deepak, V., Ramakumarpandian, S., Nellaiah, H., and Sangiliyandi, G. 2008. Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mat. Lett. 62: 4411–4413.Google Scholar
- Kalishwaralal, K., Deepak, V., Pandian, S. R. K., Kottaisamy, M., Barath-ManiKanth, S., Kartikeyan, B., and Gurunathan, S. 2010. Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf. B Biointerfaces 77: 257–262.Google Scholar
- Kathiresan, K., Manivanan, S., Nabeel, M. A., and Dhivya, B. 2009. Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf. B Biointerfaces 71: 133–137.Google Scholar
- Kaul, G., and Amiji, M. 2005. Tumor-targeted gene delivery using poly (ethylene glycol)-modified gelatin nanoparticles: in vitro and in vivo studies. Pharm. Res. 22: 951–961.Google Scholar
- Klaus, T., Joerger, R., Olsson, E., and Granqvist, C. G. 1999. Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. U.S.A. 96: 13611–13614.Google Scholar
- Klaus-Joerger, T., Joerger, R., Olsson, E., and Granqvist, C. G. 2001. Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol. 19: 15–20.Google Scholar
- Konishi, Y., Ohno, K., Saitoh, N., Nomura, T., and Nagamine, S. 2004. Microbial synthesis of gold nanoparticles by metal reducing bacterium. Trans. Mater. Res. Soc. Jpn. 29: 2341–2343.Google Scholar
- Konishi, Y., Ohno, K., Saitoh, N., Nomura, T., Nagamine, S., Hishida, H., Takahashi, Y., and Uruga, T. 2007. Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J. Biotechnol. 128: 648–653.Google Scholar
- Kowshik, M., Ashtaputre, S., Kharrazi, S., Vogel, W., Urban, J., Kulkarni, S. K., and Paknikar, K. M. 2003. Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14: 95–100.Google Scholar
- Kowshik, M., Deshmukh, N., Vogel, W., Urban, J., Kulkarni, S. K., and Paknikar, K. M. 2002. Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol. Bioeng. 78: 583–588.Google Scholar
- Kumar, V., and McLendon, L. 1997. Nanoencapsulation of cytochrome c and horseradish peroxidase at the galleries of α-zirconium phosphate. Chem. Mater. 9: 863–870.Google Scholar
- Kumar, S. A., Ayoobul, A. A., Absar, A., and Khan, M. I. 2007. Extracellular biosynthesis of CdSe quantum dots by the fungus, Fusarium oxysporum. J. Biomed. Nanotechnol. 3: 190–194.Google Scholar
- Labrenz, M., Druschel, G. K., Thomsen-Ebert, T., Gilbert, B., Welch, S. A., and Kemner, K. M. 2000. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290: 1744–1747.Google Scholar
- Lang, C., and Schuler, D. 2006. Biogenic nanoparticles: production, characterization, and application of bacterial magnetosomes. J. Phys. Condens. Matter. 18: S2815–S2828.Google Scholar
- Lee, H., Purdon, A. M., Chu, V., and Westervelt, R. M. 2004. Controlled assembly of magnetic nanoparticles from magnetotactic bacteria using microelectromagnets arrays. Nano Lett. 4: 995–998.Google Scholar
- Lengke, M. F., and Southam, G. 2006. Bioaccumulation of gold by sulfate-reducing bacteria cultured in the presence of gold (I)-thiosulfate complex. Geochim. Cosmochim. Acta 70: 3646–3661.Google Scholar
- Lengke, M. F., Fleet, M. E., and Southam, G. 2006a. Bioaccumulation of gold by filamentous cyanobacteria between 25 and 200°C. Geomicrobiol. J. 23: 591–597.Google Scholar
- Lengke, M. F., Ravel, B., Fleet, M. E., Wanger, G., Gordon, R. A., and Southam, G. 2006b. Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold (III)-chloride complex. Environ. Sci. Technol. 40: 6304–6309.Google Scholar
- Li, X., Chen, S., Hu, W., Shi, S., Shen, W., Zhang, X., and Wang, H. 2009. In situ synthesis of CdS nanoparticles on bacterial cellulose nanofibers. Carbohydr. Polym. 76: 509–512.Google Scholar
- Li, X. Z., Nikaido, H., and Williams, K. E. 1997. Silver-resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins. J. Bacteriol. 179: 6127–6132.Google Scholar
- Lin, Z., Wu, J., Xue, R., and Yang, Y. 2005. Spectroscopic characterization of Au3+ biosorption by waste biomass of Saccharomyces cerevisiae. Spectrochim. Acta A 61: 761–765.Google Scholar
- Lok, C. 2006. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res. 5: 916–924.Google Scholar
- Lortie, L., Gould, W. D., Rajan, S., McCready, R. G. L., and Cheng, K. J. 1992. Reduction of selenate and selenite to elemental selenium by a Pseudomonas stutzeri isolate. Appl. Environ. Microbiol. 58: 4042–4044.Google Scholar
- Losi, M. E., and Frankenberger, W. T. Jr. 1997. Reduction of selenium oxyanions by Enterobacter cloacae SLD1a-1: isolation and growth of the bacterium and its expulsion of selenium particles. Appl. Environ. Microbiol. 63: 3079–3084.Google Scholar
- Lovley, D. R., Stolz, J. F., Nord, G. L. Jr., and Phillips, E. J. P. 1987. Anaerobic production of magnetite by a dissimilatory iron-reducing bacterium. Nature 330: 252–254.Google Scholar
- Lovley, D. R., Phillips, E. J. P., and Lonergan, D. J. 1989. Hydrogen and formate oxidation coupled to dissimilatory reduction of iron and manganese by Alteromonas putrefaciens. Appl. Environ. Microbiol. 55: 700–706.Google Scholar
- Lovley, D. R., Phillips, E. J. P., Gorby, Y. A., and Landa, E. R. 1991. Microbial reduction of uranium. Nature 350: 413–416.Google Scholar
- Lowe, C. R. 2000. Nanobiotechnology: the fabrication and application of chemical and biological nanostructures. Curr. Opin. Struct. Biol. 10: 428–434.Google Scholar
- Macdonald, I. D. G., and Smith, W. E. 1996. Orientation of cytochrome c adsorbed on a citrate-reduced silver colloid surface. Langmuir 12: 706–713.Google Scholar
- Mann, S., Frankel, R. B., and Blakemore, R. P. 1984. Structure, morphology and crystal growth of bacterial magnetite. Nature 310: 405–407.Google Scholar
- Mann, S., Sparks, N. H. C., Frankel, R. B., Bazylinski, D. A., and Jannasch, H. W. 1990. Biomineralization of ferrimagnetic greigite (Fe3O4) and iron pyrite (FeS2) in a magnetotactic bacterium. Nature 343: 258–260.Google Scholar
- Marshall, M. J., Beliaev, A. S., Dohnalkova, A. C., Kennedy, D. W., Shi, L., Wang, Z., Boyanov, M. I., Lai, B., Kemner, K. M., McLean, J. S., Reed, S. B., Culley, D. E., Bailey, V. L., Simonson, C. J., Saffarini, D. A., Romine, M. F., Zachara, J. M., and Fredrickson, J. K. 2006. c-Type cytochrome-dependent formation of U(IV) nanoparticles by Shewanella oneidensis. PLoS Biol. 4: 1324–1333.Google Scholar
- Medintz, I. L., Uyeda, H. T., Goldman, E. R., and Mattoussi, H. 2005. Quantum dot bioconjugates for imaging, labeling and sensing. Nat. Mater. 4: 435–446.Google Scholar
- Milligan, A. J., and Morel, F. M. M. 2002. A proton buffering role for silica in diatoms. Science 297: 1848–1850.Google Scholar
- Mohammadian, A., Shojaosadati, S. A., and Habibi-Rezaee, M. 2007. Fusarium oxysporum mediates photogeneration of silver nanoparticles. J. Sci. Iran 14: 323–326.Google Scholar
- Mouxing, F. U., Qingbiao, L. I., Daohua, S. U. N., Yinghua, L. U., Ning, H. E., Xu, D., Wang H., and Huang, J. 2006. Rapid preparation process of silver nanoparticles by bioreduction and their characterizations. Chinese J. Chem. Eng. 14: 114–117.Google Scholar
- Mucha, H., Hofer, D., ABflag, S., and Swere, M. 2002. Antimicrobial finishes and modification. Melliand Textile Berichte. 83: 53–56.Google Scholar
- Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S. R., Khan, M. I., Parischa, R., Ajayakumar, P. V., Alam, M., Kumar, R., and Sastry, M. 2001a. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett. 1: 515–519.Google Scholar
- Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S. R., Khan, M. I., Ramani, R., Parischa, R., Ajaykumar, P. V., Alam, M., Sastry, M., and Kumar, R. 2001b. Bioreduction of AuCl4- ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew. Chem. Int. Ed. Engl. 40: 3585–3588.Google Scholar
- Mukherjee, P., Roy, M., Mandal, B. P., Dey, G. K., Mukherjee, P. K., Ghatak, J., Tyagi, A. K., and Kale, S. P. 2008. Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19: 075103.Google Scholar
- Musarrat, J., Dwivedi, S., Singh, B. R., Al-Khedhairy, A. A., Azam, A., Naqvi, A. 2010. Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresour. Technol. 101: 8772–8776.Google Scholar
- Myers, C. R., and Nealson, K. H. 1988. Bacterial manganese reduction and growth with manganese oxide as a sole electron acceptor. Science 240: 1319–1321.Google Scholar
- Naik, R. R., Stringer, S. J., Agarwal, G., Jones, S. E., and Stone, M. O. 2002. Biomimetic synthesis and patterning of silver nanoparticles. Nat. Mater. 1: 169–172.Google Scholar
- Nair, B., and Pradeep, T. 2002. Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst. Growth Des. 2: 293–298.Google Scholar
- Nersisyan, H. H., Lee, J. H., Son, H. T., Won, C. W., and Maeng, D. Y. 2003. New and effective chemical reduction method for preparation of nanosized silver powder and colloid dispersion. Mater. Res. Bull. 38: 949–956.Google Scholar
- Niemeyer, C. M. 2001. Nanoparticles, proteins, and nucleic acids: biotechnology meets material science. Agnew. Chem. Int. Ed. Engl. 40: 4128–4158.Google Scholar
- O’Neal, D. P., Hirsch, L. R., Halas, N. J., Payne, J. D., and West, J. L. 2004. Photothermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 209: 171–176.Google Scholar
- Oremland, R. S., Herbel, M. J., Blum, J. S., Langley, S., Ajayan, P., Sutto, T., Ellis, A. V., and Curran, S. 2004. Structural and spectral features of selenium nanospheres formed by Se-respiring bacteria. Appl. Environ. Microbiol. 70: 52–60.Google Scholar
- Pan, Z. W., Dai, Z. R., and Wang, Z. L. 2001. Nanobelts of semiconducting oxides. Science 291: 1947–1949.Google Scholar
- Park, S. H., Oh, S. G., Munb, J. Y., and Han, S. S. 2006. Loading of gold nanoparticles inside the DPPC bilayers of liposome and their effects on membrane fluidities. Colloids Surf. B Biointerfaces 48: 112–118.Google Scholar
- Perantoni, M., Esquivel, D. M. S., Wajnberg, E., Acosta-Avalos, D., Cernicchiaro G., and Lins de Barros, H. 2009. Magnetic properties of the microorganism Candidatus Magnetoglobus multicellularis. Naturwissenschaften 96: 685–690.Google Scholar
- Perkel, J. M. 2004. The ups and downs of nanobiotech. The Scientist 18: 14–18.Google Scholar
- Philip, D. 2009. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochim. Acta A 73: 374–381.Google Scholar
- Pighi, L., Pumpel, T., and Schinner, F. 1989. Selective accumulation of silver by fungi. Biotechnol. Lett. 11: 275–280.Google Scholar
- Prasad, K., Jha, A. K., and Kulkarni, A. R. 2007. Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Res. Lett. 2: 248–250.Google Scholar
- Pugazhenthiran, N., Anandan, S., Kathiravan, G., Prakash, N. K. U., Crawford, S., and Ashok kumar, M. 2009. Microbial synthesis of silver nanoparticles by Bacillus sp.. J. Nanopart. Res. 11: 1811–1815.Google Scholar
- Pum, D., and Sleytr, U. B. 1999. The application of bacterial S-layers in molecular nanotechnology. Trends Biotechnol. 17: 8–12.Google Scholar
- Rai, M., Yadav, A., and Gade, A. 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27: 76–83.Google Scholar
- Ramanavicius, A., Kausaite, A., and Ramanaviciene, A. 2005. Biofuel cell based on direct bioelectrocatalysis. Biosens. Bioelectron. 20: 1962–1967.Google Scholar
- Rao, C. N. R., Kulkarni, G. U., John Thomas, P., Agrawal, V. V., Gautam, U. K., and Ghosh, M. 2003. Nanocrystals of metals, semiconductors and oxides: novel synthesis and applications. Curr. Sci. 85: 1041–1045.Google Scholar
- Safarik, I., and Safarikova, M. 2002. Magnetic nanoparticles biosciences. Monatsh. Chem. 133: 737–759.Google Scholar
- Sakaguchi, T., Tsuji, T., Nakajima, A., and Horikoshi, T. 1979. Accumulation of cadmium by green microalgae. Eur. J. Appl. Microbiol. Biotechnol. 8: 207–215.Google Scholar
- Sanghi, R., and Verma, P. 2009. Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour. Technol. 100: 501–504.Google Scholar
- Sastry, M., Ahmad, A., Khan, M. I., and Kumar, R. 2003. Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr. Sci. 85: 162–170.Google Scholar
- Sathishkumar, M., Sneha, K., Won, S. W., Cho, C. W., Kim, S., and Yun, Y. S. 2009. Cinnamon zeylanicum bark extract and powder mediated green synthesis of nanocrystalline silver particles and its bactericidal activity. Colloids Surf. B Biointerfaces 73: 332–338.Google Scholar
- Schmid, G. 1992. Clusters and colloids–metals in the embryonic state. Chem. Rev. 92: 1709–1727.Google Scholar
- Schuler, D., and Frankel, R. B. 1999. Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications. Appl. Microbiol. Biotechnol. 52: 464–473.Google Scholar
- Senapati, S., Mandal, D., Ahmad, A., Khan, M. I., Sastry, M., and Kumar, R. 2004. Fungus mediated synthesis of silver nanoparticles: a novel biological approach. Ind. J. Phys. 78A: 101–105.Google Scholar
- Shahverdi, A. R., Minaeian, S., Shahverdi, H. R., Jamalifar, H., and Nohi, A. A. 2007. Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Proc. Biochem. 42: 919–923.Google Scholar
- Shaligram, N. S., Bule, M., Bhambure, R., Singhal, R. S., Singh, S. K., Szakacs, G., and Pandey, A. 2009. Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Proc. Biochem. 44: 939–943.Google Scholar
- Shankar, S. S., Ahmad, A., Pasrichaa, R., and Sastry, M. 2003. Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J. Mater. Chem. 13: 1822–1826.Google Scholar
- Sharma, P. K., Balkwill, D. L., Frenkel, A., and Vairavamurthy, M. A. 2000. A new Klebsiella planticola strain (Cd-1) grows anaerobically at high cadmium concentrations and precipitates cadmium sulfide. Appl. Environ. Microbiol. 66: 3083–3087.Google Scholar
- Shiying, H., Zhirui, G., Zhanga, Y., Zhanga, S., Wanga, J., and Ning, G. 2007. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater. Lett. 61: 3984–3987.Google Scholar
- Silverberg, B. A., Wong, P. T. S., and Chau, Y. K. 1976. Localization of selenium in bacterial cells using TEM and energy dispersive X-ray analysis. Arch. Microbiol. 107: 1–6.Google Scholar
- Smith, A. M., Duan, H., Mohs, A. M., and Nie, S. 2008. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv. Drug Deliv. Rev. 60: 1226–1240.Google Scholar
- Smith, P. R., Holmes, J. D., Richardson, D. J., Russell, D. A., and Sodeau, J. R. 1998. Photophysical and photochemical characterization of bacterial semiconductor cadmium sulfide particles. J. Chem. Soc. Faraday Trans. 94: 1235–1241.Google Scholar
- Suzuki, Y., Kelly, S. D., Kemner, K. M., and Banfield, J. F. 2002. Nanometer-size products of uranium bioreduction. Nature 419: 134.Google Scholar
- Sweeney, R. Y., Mao, C., Gao, X., Burt, J. L., Belcher, A. M., Georgiou, G., and Iverson, B. L. 2004. Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem. Biol. 11: 1553–1559.Google Scholar
- Tomei, F. A., Barton, L. L., Lemanski, C. L., Zocco, T. G., Fink, N. H., and Sillerud, L. O. 1995. Transformation of selenate and selenite to elemental selenium by Desulfovibrio desulfuricans. J. Ind. Microbiol. 14: 329–336.Google Scholar
- Vigneshwaran, N., Ashtaputre, N. M., Varadarajan, P. V., Nachane, R. P., Paralikar, K. M., and Balasubramanya, R. H. 2007. Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mat. Lett. 61: 1413–1418.Google Scholar
- Vigneshwaran, N., Kathe, A. A., Varadarajan, P. V., Nachane, R. P., and Balasubramanya, R. H. 2006. Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf. B Biointerfaces 53: 55–59.Google Scholar
- Watson, J.H.P., Ellwood, D.C., Soper, A.K., and Charrock, J. 1999. Nanosized strongly-magnetic bacterially-produced iron sulfide materials. J. Magn. Mater. 203: 69–72.Google Scholar
- Woolfolk, C. A., and Whiteley, H. R. J. 1962. Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus I. Stoichiometry with compounds of arsenic, selenium, tellurium, transition and other elements. J. Bacteriol. 84: 647–658.Google Scholar
- Wu, X., Liu, H., Liu, J., Haley, K. N., Treadway, J. A., and Larson, J. P., Ge, N., Peale, F., and Bruchez, M. P. 2003. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21: 41–46.Google Scholar
- Xie, Y., Ye, R., and Liu, H. 2006. Synthesis of silver nanoparticles in reverse micelles stabilized by natural biosurfactant. Colloids Surf. A Physicochem. Eng. Asp. 279: 175–178.Google Scholar
- Xu, T., and Xie, C. S. 2003. Tetrapod-like nano-particle ZnO/acrylic resin composite and its multi-function property. Prog. Org. Coatings 46: 297–301.Google Scholar
- Yadav, V., Sharma, N., Prakash, R., Raina, K. K., Bharadwaj, L. M., and Prakash, N. T. 2008. Generation of selenium containing nano-structures by soil bacterium, Pseudomonas aeruginosa. Biotechnology 7: 299–304.Google Scholar
- Yong, P., Rowsen, N. A., Farr, J. P. G., Harris, I. R., and Macaskie, L. E. 2002. Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307. Biotechnol. Bioeng. 80: 369–379.Google Scholar
- Yu, D. G. 2007. Formation of colloidal silver nanoparticles stabilized by Na+poly(-glutamic acid)–silver nitrate complex via chemical reduction process. Colloids Surf. B Biointerfaces 59: 171–178.Google Scholar
- Zeiri, L., Bronk, B. V., Shabtai, Y., Czégé, J., and Efrima, S. 2002. Silver metal induced surface enhanced Raman of bacteria. Colloids Surf. A Physicochem. Eng. Asp. 208: 357–362.Google Scholar
- Zhang, Y., Kohler, N., and Zhang, M. 2002. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23: 1553–1561.Google Scholar
- Zhang, Y., Peng, H., Huanga, W., Zhou, Y., and Yan, D. 2008. Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles. J. Colloid Interface Sci. 325: 371–376.Google Scholar
- Zhang, H., Li, Q., Lu, Y., Sun, D., Lin, X., Deng, X., He, N., and Zheng, S. 2005. Biosorption and bioreduction of diamine silver complex by Corynebacterium. J. Chem. Technol. Biotechnol. 80: 285–290.Google Scholar