Future Application of Probiotics: A Boon from Dairy Biology

  • Vinod SinghEmail author
  • Sarika Amdekar
  • Hariom Yadav
  • Nagendra Nath Mishra
  • Shailini Jain


Microbes have been used for millenia in food and alcoholic ­fermentations; in recent years, microbes have undergone scientific scrutiny of their ability for preventive and therapeutic effects in humans. This work has led to the establishment of a new term, “probiotics.” Lactic acid bacteria (LAB) are normal microflora of the intestine of most animals. They play an important role in humans and other animals and act as an immunomodulator. LAB are helpful in disease treatment and prevention, as well as for improved digestion and absorption of nutrients. Probiotic microorganisms include LAB i.e., Lactobacillus acidophilus, L. bulgaricus, L. casei, L. plantarum, L. rhamnosus, etc. Use of these live bacteria to elicit an immune response or to carry a vaccine component is a new development in vaccine formulation. The advantages of live bacterial vaccines are their ability to mimic the natural infection, their intrinsic adjuvant properties, and that they can be administered orally. Components of pathogenic and nonpathogenic food-related microbes are currently being evaluated as candidates for oral vaccines.


Probiotics Infectious diseases Vaccine 


  1. Akira, S., Takeda, K. and Kaisho, T. (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2: 675–680.CrossRefGoogle Scholar
  2. Aldovini, A. and Young, R. A. (1991) Humoral and cell-mediated immune response to live recombinant BCG-HIV vaccines. Nature 351: 479–482.CrossRefGoogle Scholar
  3. Anderson, E. J. and Weber, S. G. (2004) Rotavirus infection in adults. Lancet Infect. Dis. 4(2): 91–99.CrossRefGoogle Scholar
  4. Benyacoub, J., Hopkins, S., Potts, A., Kelly, S., Kraehenbuhl, J. P., Curtiss, R. III, De Grandi, P. and Nardelli-Haefliger, D. (1999) The nature of the attenuation of Salmonella typhimurium strains expressing human papillomavirus type 16 virus-like particles determines the systemic and mucosal antibody responses in nasally immunized mice. Infect. Immun. 67: 3674–3679.Google Scholar
  5. Bernet, M. F., Brassart, D., Neeser, J. R. and Servin, A. L. (1994).Lactobacillus acidophilus LA1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria. Gut 35: 483–489.CrossRefGoogle Scholar
  6. Blackman, M. J., Ling, I. T., Nicholls, S. C. and Holder, A. A. (1991) Proteolytic processing of the Plasmodium falciparum merozoite surface protein-1 produces a membrane-bound fragment containing two epidermal growth factor-like domains. Mol. Biochem. Parasitol. 49: 29–33.CrossRefGoogle Scholar
  7. Casas, I. A. and Dobrogosz, W. J. (1997) Lactobacillus reuteri: overview of a new probiotic for humans and animals. Microecol. Ther. 26: 221–231.Google Scholar
  8. Chukeatirote, E. (2003) Potential use of probiotics Songklanakarin. J. Sci. Technol. 25(2): 275–282.Google Scholar
  9. Classen, E., Van Vinsen, R., Posko, M. and Boersma, W. A. U. (1995) New and safe “oral” live vaccines based on Lactobacillus. Adv. Exp. Med. Biol. 371B: 1553–1558.Google Scholar
  10. Detme, A. and Glenting, J. (2006) Live bacterial vaccines – A review and identification of potential hazards. Microb. Cell Fact. 5: 23.CrossRefGoogle Scholar
  11. Dietrich, G., Griot-Wenk, M., Metcalfe, I. C., Lang, A. B. and Viret, J. F. (2003) Experience with registered mucosal vaccines. Vaccine 21: 678–683.CrossRefGoogle Scholar
  12. Donohue, D. C. and Salminen, S. (1996) Safety of probiotic bacteria. Asia Pac. J. Clin. Nutr. 5: 25–28.Google Scholar
  13. Elmer, G. W. (2001) Probiotics: “living drugs.” Am. J. Health Syst. Pharm. 58: 1101–1109.Google Scholar
  14. Fuller, R. (1989) Probiotics in man and animals. J. Appl. Bacteriol. 66: 365–378.Google Scholar
  15. Fuller, R. (1991) Probiotics in human medicine. Gut 32: 439–442.CrossRefGoogle Scholar
  16. Goldin, B. R. Gorbach, S. L., Saxelin, M., Barakat, S., Gualtieri, L. and Salminen, S. (1992) Survival of Lactobacillus species (strain GG) in human gastrointestinal tract. Dig. Dis. Sci. 37: 121–128.CrossRefGoogle Scholar
  17. Gomboova, A., Deme, P. and Valent, M. (1986) Immunotherapeutic effect of the lactobacillus vaccine, Solco Trichovac, in trichomoniasis is not mediated by antibodies cross reacting with Trichomonas vaginalis. Genitourin. Med. 62: 107–110.Google Scholar
  18. Gonzalez, S. N., Cardoza, R., Apella, M. C. and Oliver, G. (1995) Biotherapeutic role of ­fermented milk. Biotherapy 8: 129–134.CrossRefGoogle Scholar
  19. Goodwin, J. S. (1995) Decreased immunity and increased morbidity in the elderly. Nutr. Rev. 53:S41–S46.CrossRefGoogle Scholar
  20. Greene, J. D. and Klaenhammer, T. R. (1994) Factors involved in adherence of Lactobacilli to human Caco-2 cells. Appl. Environ. Microbiol. 60: 4487–4494.Google Scholar
  21. Havenaar, R., Brink, B. T. and Huisin’t Veld, J. H. J. (1992) Selection of strains for probiotic use. In: Probiotics, the Scientific Basis. Fuller R., ed. Chapman and Hall, London. 209–224Google Scholar
  22. Holder, A. A. and Freeman, R. R. (1981) Immunization against blood-stage rodent malaria using purified parasite antigens. Nature 294: 361–364.CrossRefGoogle Scholar
  23. Holzapfel, W. H., Haberer, P., Snel, J., Schillinger, U. and HuisIn’t Veld, J. H. (1998) Overview of gut flora and probiotics. Int. J. Food Microbiol. 41: 85–101.CrossRefGoogle Scholar
  24. Isolauri, E., Juntunen, M., Rautanen, T., Sillanaukee, P. and Koivula, T. (1991) A human Lactobacillus strain (Lactobacillus casei sp strain GG) promotes recovery from acute diarrhea in children. Pediatrics 88: 90–97.Google Scholar
  25. Jack, R. W., Tagg, J. R. and Ray, B. (1994) Bacteriocins of Grampositive bacteria. Microbiol. Rev. 59: 171–200.Google Scholar
  26. Kajikawa, A. E., Satoh, R. J., Leer, S., Yamamoto, S. and Igimi, S. (2007) Intragastric immunization with recombinant Lactobacillus casei expressing flagellar antigen confers antibody-independent protective immunity against Salmonella enterica serovar Enteritidis. Vaccine 25: 3599–3605.CrossRefGoogle Scholar
  27. Ke-Qin, X., Yuka, H., Yoshihiko, T., Shizunobu, I., Yoshitsugu, K., Nao, J., Kenji, O., Akira, K., Mayumi, K., Kenji, H., Dennis, K. and Kenji, O. (2003) Immunogenicity and protective efficacy of orally administered recombinant Lactococcus lactis expressing surface-bound HIV Env. Blood 102: 223–229.CrossRefGoogle Scholar
  28. Khansari, D. N., Murgo, A. J. and Faith, A. E. (1990) Effects of stress on the immune system. Immunol. Today 11: 170–175.CrossRefGoogle Scholar
  29. Kirjavainen, P. E., Ouwehand, A. C., Isolauri, E. and Salminen, S. J. (1998) The ability of probiotic bacteria to bind to human intestinal mucus. FEMS Microbiol. Lett. 167: 185–189.CrossRefGoogle Scholar
  30. Klijn, N., Weerkamp, A. H. and de Vos, W. M. (1995) Genetic marking of Lactococcus lactis shows its survival in the human gastrointestinal tract. Appl. Environ. Microbiol. 61: 2771–2774.Google Scholar
  31. Kochi, S. K., Killeen, K. P. and Ryan, U. S. (2003) Advances in the development of bacterial vector technology. Expert. Rev. Vaccines 74(2): 31–43.Google Scholar
  32. Korik, L. M., Ljubimova, L. K. and Tovstolec, K. P. (1968) Immediate and remote results of treatment of trichomonosis in men with trichomonal vaccine. Vestn. Dermatol. Venerol. 42: 80–84.Google Scholar
  33. Kotloff, K. L., Noriega, F., Losonsky, G. A., Sztein, M. B., Wasserman, S. S., Nataro, J. P. and Levine, M. M. (1996) Safety, immunogenicity, and transmissibility in humans of CVD 1203, a live oral Shigella flexneri 2a vaccine candidate attenuated by deletions in aroA and virG. Infect. Immun. 64: 4542–4548.Google Scholar
  34. Kukreja, R. C., Kontos, M. C. and Hess, M. L. (1996) Free radicals and heat shock protein in the heart. Ann. NY Acad. Sci. 793: 108–122.CrossRefGoogle Scholar
  35. Lin, S. Y. and Chen, C. T. (2000) Reduction of cholesterol by Lactobacillus acidophilus in culture broth. J. Food Drug Anal. 8: 97–102.Google Scholar
  36. Lin, S. Y., Ayres, J. W., Winkler, W. and Sandine, W. E. (1989) Lactobacillus effects on cholesterol: in vitro and in vivo results. J. Dairy Sci. 72: 2885–2899.CrossRefGoogle Scholar
  37. Lindberg, A. A. (1995) The history of live bacterial vaccines. Dev. Biol. Stand. 84: 211–219.Google Scholar
  38. Lindberg, A. A. (1998) Vaccination against enteric pathogens: from science to vaccine trials. Curr. Opin. Microbiol. 1: 116–124.CrossRefGoogle Scholar
  39. Link-Amster, H., Rochat, F., Saudan, K., Mignot, O. and Aeschlimann, J. (1994) Modulation of a specific humoral immune response and changes in intestinal flora mediated through fermented milk. FEMS Immunol. Med. Microbiol. 10: 55–63.CrossRefGoogle Scholar
  40. Matsuzak, T. and Chin, J. (2000) Modulating immune response with probiotic bacteria. Immunol. Cell Biol. 78: 67–73.CrossRefGoogle Scholar
  41. Mattingly, J. and Waksman, B. (1978) Immunologic suppression after oral administration of antigen I Specific suppressor cells formed in rat Peyer’s patches after oral administration of sheep erythrocytes and their systemic migration. J. Immunol. 121: 1878–1883.Google Scholar
  42. McGhee, J. R., Mestecky, J., Dertzbaugh, M. T., Eldridge, J. H., Hirasawa, M. and Kiyono, H. (1992) The mucosal immune system: from fundamental concepts to vaccine development. Vaccine 10: 75–88.CrossRefGoogle Scholar
  43. Mercenier, A., Muller-Alouf, H. and Grangette, C. (2000) Lactic acid bacteria as live vaccines. Curr. Issues Mol. Biol. 2: 17–25.Google Scholar
  44. Metchnikoff, E. (1908) The prolongation of life. New York, NY: CP Putnam’s Sons. 151–183.Google Scholar
  45. Miller, L. H., Roberts, T., Shahabuddin, M. and McCutchan, T. F. (1993) Analysis of sequence diversity in the Plasmodium falciparum merozoite surface protein-1 (MSP-1). Mol. Biochem. Parasitol. 59: 1–14CrossRefGoogle Scholar
  46. Morimoto, R. I. and Santoro, M. G. (1998) Stress-inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection. Nat. Biotechnol. 16: 833–838.CrossRefGoogle Scholar
  47. Nardelli-Haefliger, D., Kraehenbuhl, J. P., Curtiss, R. III, Schodel, F., Potts, A., Kelly, S. and De Grandi, P. (1996) Oral and rectal immunization of adult female volunteers with a recombinant attenuated Salmonella typhi vaccine strain. Infect. Immun. 64: 5219–5224.Google Scholar
  48. Netherwood, T., Gilbert, H. J., Parker, D. S. and O’Donnell, A. G. (1999) Probiotics shown to change bacterial community structure in the avian gastrointestinal tract. Appl. Environ. Microbiol. 65: 5134–5138.Google Scholar
  49. Neutra, M. and Krahenbuhl, J. (1996) M cells as a Pathway for antigen uptake and processing. In: Essentials of Mucosal Immunology. Kagnoff M. and Kiyono H., eds. Academic, New York, NY. 2: 29–36.CrossRefGoogle Scholar
  50. Ouwehand, A. C., Kirjavainen, P. V., Gronlund, M. M., Isolauri, E. and Salminen, S. (1999) Adhesion of probiotic micro-organisms to intestinal mucus. Int. Dairy J 9: 623–630.CrossRefGoogle Scholar
  51. Pawelec, G., Adibzadeh, M., Pohla, H. and Schaudt, K. (1995) Immunosenescence: aging of the immune system. Immunol. Today 16: 420–422.CrossRefGoogle Scholar
  52. Perdigón, G. and Alvarez, S. (1992) Probiotics and the immune state. In: Probiotics. The Scientific Basis. Fuller R., ed. Chapman and Hall, London. 7: 145–180.Google Scholar
  53. Phillips-Quagliata, J. and Lamm, M. (1988) Migration of lymphocytes in the mucosal immune system. In: Migration and Homing of Lymphoid Cells. Husband A., ed. CRC Press, Boca Raton, FL. 53–75.Google Scholar
  54. Reid, G. (1999) The scientific basis for probiotic strains of Lactobacillus. Appl. Environ. Microbiol. 65: 3763–3766.Google Scholar
  55. Reid, G. and Burton, J. (2002) Use of Lactobacillus to prevent infection by pathogenic bacteria. Microbes Infect. 4: 319–324.CrossRefGoogle Scholar
  56. Reid, G., Servin, A., Bruce, A. W. and Busscher, H. J. (1993) Adhesion of three Lactobacillus strains to human urinary and intestinal epithelial cells. Songklanakarin J. Sci. Technol. Microbios. 75: 57–65.Google Scholar
  57. Salimen, S., Isolauri, E. and Salimen, E. (1996) Probiotics for stabilising the gut mucosal barrier: successful strains and future challenges. Antonie van Leeuwenhoek 70: 347–358.CrossRefGoogle Scholar
  58. Sarem-Damerdjii, L. O., Sarem, F., Marchal, L. and Nicolas, J. P. (1995) In vitro colonisation ability of human colon mucosa by exogenous Lactobacillus strains. FEMS Micorbiol. Lett. 131: 133–137.CrossRefGoogle Scholar
  59. Schnell, M. J., Foley, H. D., Siler, C. A., Mc Gettigan, J. P., Dietzachold, B. and Pomerantz, R. J. (2000) Recombinant rabies virus as potential live-viral vaccines for HIV-1. Proc. Natl. Acad. Sci. USA 97: 3544–3549.CrossRefGoogle Scholar
  60. Shornikova, A. V., Casas, A., Mykkanen, H., Salo, E. and Vesikari (1997) Bacteriotherpy with Lactobacillus reuteri in rotavirus gastroenteritis. Pediatr. Infect. Dis. J. 16: 1103–1107.CrossRefGoogle Scholar
  61. Singh, V., Singh, K., Amdekar, S., Singh, D. D., Tripathi, P., Sharma, G. L. and Yadav, H. (2008) Innate and specific gut-associated immunity and microbial interference. FEMS Immunol. Med. Microbiol. 55: 6–12.CrossRefGoogle Scholar
  62. Strobel, S. (1995) Oral tolerance. In: Mucosal Immunity and the Gut Epithelium: Interactions in Health and Disease. Dyn Nutr Res. Karger, Basel. 4: 65–75.Google Scholar
  63. Tahri, K., Grill, J. P. and Schneider, F. (1996) Bifidobacteria strain behavior toward cholesterol: Coprecipitation with bile salts and assimilation. Curr. Microbiol. 33: 187–193.CrossRefGoogle Scholar
  64. Tatyana, O., Michal, S., Adriana, D., Klein, R., Natalie, A. and Babeth, R. (2000) A new method of long-term preventive cardioprotection using Lactobacillus. Am. J. Physiol. Heart Circ. Physiol. 278: 1717–1724.Google Scholar
  65. Underdahl, H., Medina, A. and Doster, A. (1982) Effect of Streptococcus faecium C-68 in control of Escherichia coli induced diarrhea in gnotobiotic pigs. Am. J. Vet. Res. 43: 2227–2232.Google Scholar
  66. Velazquez, F. R., Matson, D. O., Calva, J. J., Guerrero, S. L., Morrow, A. L., Carter-Campbell, S., Glass, R. I., Estes, M. K., Pickering, L. K. and Ruiz-Palacios. (1996) Rotavirus infections in infants as protection against subsequent infections. N. Eng. J. Med. 335(14): 1022–1028.CrossRefGoogle Scholar
  67. Weissman, D., Ni, H., Scales, D., Dude, A., Capodici, J., Mcgibney, K. Abdool., Isaacs, S., Cannon, G. and Kariko, K. (2000) HIV gag mRNA transfection of dendritic cells (DC) delivers encoded antigen to MHC class I and II molecules, causes DC maturation, and induces a potent human in vitro primary immune response. J. Immunol. 165: 4710–4717.Google Scholar
  68. Woodward B (1998) Protein, calories and immune defenses. Nutr. Rev. 56: S84–S92.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Vinod Singh
    • 1
    Email author
  • Sarika Amdekar
  • Hariom Yadav
  • Nagendra Nath Mishra
  • Shailini Jain
  1. 1.Department of MicrobiologyBarkatullah UniversityBhopalIndia

Personalised recommendations