Mycorrhizal Inoculants: Progress in Inoculant Production Technology

  • Zaki A. SiddiquiEmail author
  • Ryota Kataoka


Of the seven types of mycorrhizae, the symbiotic association of plants with arbuscular mycorrhizae (AM) and ectomycorrhiza (ECM) is the most abundant and widespread. Mycorrhizal inoculant technology, especially of AM and ECM, appears to be a promising avenue for sustainable agriculture and forestry because of their extensive and productive association with plants. Production of mycorrhizal inocula is a complex procedure that requires commercial enterprises to develop the necessary biotechnological skill and ability to respond to legal, ethical, educational, and commercial requirements. At present, commercial mycorrhizal inocula are produced in pots, nursery plots, containers with different substrates and plants, and aeroponic systems, and by nutrient film technique, or in vitro. Different formulated products are now marketed, which creates the need for the establishment of standards for widely accepted quality control. Generally, preparation and formulation of mycorrhizal inocula are carried out by applying polymer materials with well-established characteristics and which are useful for agriculture and forestry. The most commonly used methods involve entrapment of fungal materials in natural polysaccharide gels, which includes immobilization of mycorrhizal root pieces, vesicles, and spores, in some cases coentrapped with other plant-beneficial microorganisms. Efforts should be devoted toward registration procedures of mycorrhizal inoculants to stimulate the development of mycorrhizal products industry. Biotechnology research and development in such activities must be encouraged, particularly with regard to interactions of mycorrhizal fungi with other rhizosphere microbes, and selection of new plant varieties with enhanced mycorrhizal traits to provide maximum benefits to agriculture and forestry.


Biotechnology Mycorrhiza Mass culture Commercial inoculum Formulation 


  1. Abdul-Khaliq, Gupta, M.L., Alam, A. 2001. Biotechnological approaches for mass production of arbuscular mycorrhizal fungi: current scenario and future strategies. In: Mukerji, K.G., Manoharachary, C., Chamola, B.P. (eds.), Techniques in Mycorrhizal Studies. Kluwer Academic Publishers, The Netherlands, pp. 299–312.Google Scholar
  2. Adholeya, A. 2003. Commercial production of AMF through industrial mode and its large scale application. In: Proc. 4th Int. conf. Mycorrhizae (ICOM4), Montreal, Canada.Google Scholar
  3. Akhtar, M.S. and Siddiqui, Z.A. 2008. Arbuscular mycorrhizal fungi as potential bioprotectants against plant pathogens. In: Siddiqui, Z.A., Akhtar, M.S., Futai, K. (eds.), Mycorrhizae: Sustainable Agriculture and Forestry. Springer, Dordrecht, The Netherlands, pp. 61–97, 362.CrossRefGoogle Scholar
  4. Akhtar, M.S., Siddiqui, Z.A. and Wiemken, A. 2011. Arbuscular mycorrhizal fungi and Rhizobium to control plant fungal diseases. Alternative farming systems, biotechnology, drought stress and ecological fertilization. Series Sustain. Agric. Rev. vol. 6 (Edit. Lichtfouse, E.) 390p. ISBN: 978-94-007-0185-49 (in press)Google Scholar
  5. Ali, N.A. and Jackson, R.M. 1988. Effects of plant roots and their exudates on germination of spores of ectomycorrhizal fungi. Trans. Br. Mycol. Soc. 91: 253–260.CrossRefGoogle Scholar
  6. Allen, M.F. 1991. The Ecology of Mycorrhizae. Cambridge, UK: Cambridge University Press.Google Scholar
  7. Allen, M.F., Swenson, W., Querejeta, J.I., Egerton-Warburton, L.M. and Treseder, K.K. 2003. Ecology of mycorrhizae: a conceptual frame work for complex interactions among plants and fungi. Annu. Rev. Phytopathol. 41: 271–303.CrossRefGoogle Scholar
  8. Bagyaraj, D.J. 1992. Mycorrhizal association in plants. In: Bagyaraj, D.J., Manjunath, A. (eds.), Manual of Mycorrhiza Technology. University of Agriculture Sciences, Bangalore, India.Google Scholar
  9. Becard, G. and Piche, Y. 1992. Establishment of vesicular arbuscular mycorrhiza in root organ culture: review and proposed methodology. In: Norris, J., Read, D., Varma, A. (eds.), Techniques for the Study of Mycorrhiza. Academic Press, New York, NY, pp. 89–108.Google Scholar
  10. Bécard, G. and Piché, Y. 1989. Fungal growth stimulation by CO2 and root exudates in vesicular-arbuscular mycorrhizal symbiosis. Appl. Enviro. Microbiol. 55:2320–2325.Google Scholar
  11. Bhowmik S.N. and Singh C.S. 2004. Mass multiplication of AM inoculum: effect of plant growth-promoting rhizobacteria and yeast in rapid culturing of Glomus mosseae. Curr. Sci. 86: 705–709Google Scholar
  12. Brundrett, M.C. Bougher, N., Dell, B., Grove, T, and Malajczuk, N. 1996. Working with mycorrhizas in forestry and agriculture. The Australian Center for International Agricultural Research. Monograph, Canberra, Australia. 375p.CrossRefGoogle Scholar
  13. Brundrett, M.C. 2002. Coevolution of roots and mycorrhizas of land plants. New Phytol. 154, 275–304.CrossRefGoogle Scholar
  14. Chabot, S., Becard, G. and Piche, Y. 1992. Life cycle of Glomus intraradices in root organ culture. Mycologia 84: 315–321CrossRefGoogle Scholar
  15. Chellappan, P., Christy, S.A.A. and Mahadevan, A. 2001. Multiplication of arbuscular mycorrhizal fungi on roots. In: Mukerji, K.G., Manoharachary, C., Chamola, B.P. (eds.), Techniques in Mycorrhizal Studies. Kluwer Academic Publishers, The Netherlands, pp. 285–297.Google Scholar
  16. Chen, Y.L., Kang, L.H., Malajczuk, N. and Dell, B. 2006. Selecting ectomycorrhizal fungi for inoculating plantations in south China: effect of Scleroderma on colonization and growth of exotic Eucalyptus globulus, E. urophylla, Pinus elliottii, and P. radiata. Mycorrhiza 16: 251–259.CrossRefGoogle Scholar
  17. Clémençon, H., Emmett, V. and Emmett, E.E. 2004. Cytology and Plectology of the Hymenomycetes. Bibliotheca Mycologica. Vol 199. Berlin: J Cramer. 488 p.Google Scholar
  18. Corbery Y. and Le Tacon F. 1997. Storage of ectomycorrhizal fungi by freezing. Ann. For. Sci. 54: 211–217CrossRefGoogle Scholar
  19. da Silva, F.S.B., Yano-Melo, A.M. and Maia, L.C. 2007. Production and infectivity of inoculum of arbuscular mycorrhizal fungi multiplied in a substrate supplemented with Tris-HCL buffer. Braz. J. Microbiol. 38: 752–755.Google Scholar
  20. Dahlberg, A. and Stenlid, J. 1994. Size, distribution and biomass of genets in populations of Suillus bovinus (L.: Fr.) Roussel revealed by somatic incompatibility. New Phytol. 128: 225–234.CrossRefGoogle Scholar
  21. Dalpe, Y. 2004. Arbuscular mycorrhiza inoculum to support sustainable cropping systems,
  22. Diop, T.A. 2003. In vitro culture of arbuscular mycorrhizal fungi: advances and future prospects. Afr. J. Biotechnol. 2: 692–697Google Scholar
  23. Douds, D.D. and Schenck, N.C. 1990. Increased sporulation of vesicular-arbuscular mycorrhizal fungi by mainpulation of nutrient regimens. Appl. Environ. Microbiol. 56:413–418.CrossRefGoogle Scholar
  24. Douds, D.D. Jr. 2002. Increased spore production by Glomus intraradices in a split-plate monoxenic culture system by repeated harvest, gel replacement and re-supply of glucose to the mycorrhiza. Mycorrhiza 12: 163–167.CrossRefGoogle Scholar
  25. Douds, D.D. Jr., Nagahashi, G., Pfeffer, P.E., Reider, C. and Kayser, W.M. 2006. On-farm production of AM fungus inoculum in mixtures of compost and vermiculite. Bioresour. Technol. 97: 809–818.CrossRefGoogle Scholar
  26. Douds, D.D. Jr., Nagahashi, G. and Hepperly, P.R. 2010. On-farm production of inoculum of indigenous arbuscular mycorrhizal fungi and assessment of diluents of compost for inoculum production. Bioresour. Technol. 101: 2326–2330.CrossRefGoogle Scholar
  27. Duponnois, R. and Garbaye, J. 1991. Effect of dual inoculation of Douglas fir with the ectomycorrhizai fungus Laccaria laccata and mycorrhization helper bacteria (MHB) in two bare-root forest nurseries. Plant Soil 138: 169–176.CrossRefGoogle Scholar
  28. Epstein, E. 1972. Mineral Nutrition of Plants: Principles and Perspectives. Wiley, New York, NY. p 412.Google Scholar
  29. Feldmann, F. and Idczak, E. 1992. Inoculum production of vesicular arbuscular mycorrhizal fungi for use in tropical nursery. In: Nooris, J.R., Read, D.J., Varma, A.K. (eds.), Methods in Microbiology, vol. 24. Academic Press, London, pp. 339–357.Google Scholar
  30. Fortin, J.A., Becard, G., Declerck, S., Dalpe, Y., St-Arnaud, M., Coughlan, A.P. and Piche, Y. 2002. Arbuscular mycorrhiza on root-organ cultures: A review. Can. J. Bot. 80: 1–20.CrossRefGoogle Scholar
  31. Fries, N. 1976. Spore germination in Boletus induced by amino acids. Proc. K. Ned. Akad. Wet. Ser. C 79: 142–146.Google Scholar
  32. Fries, N. 1978. Basidiospore germination in some mycorrhiza-forming hymenomycetes. Trends. Br. Mycol. Soc. 70: 319–324.CrossRefGoogle Scholar
  33. Fries, N. 1987. Somatic incompatibility and field distribution of the ectomycorrhizal fungus Suillus luteus (Boletaceae). New Phytol. 107: 735–739.CrossRefGoogle Scholar
  34. Futai, K., Taniguch, T. and Kataoka, R. 2008. Ectomycorrhizae and their importance in forest ecosystem. In: Siddiqui, Z.A., Akhtar, M.S., Futai K. (eds.), Mycorrhizae: Sustainable Agriculture and Forestry. Springer, Dordrecht, The Netherlands, pp. 241–285, 362. CrossRefGoogle Scholar
  35. Gentry, T.J., Rensing, C. and Pepper, I. 2004. New approaches for bioaugmentation as a remediation technology. Crit. Rev. Environ. Sci. Technol. 34: 447–494CrossRefGoogle Scholar
  36. Gianinazzi-Pearson, V., Branzanti, B. and Gianinazzi, S. 1989. In vitro enhancement of spore germination and early hyphal growth of a vesicular-arbuscular mycorrhizal fungus by host root exudates and plant flavonoids. Symbiosis 7: 243–255.Google Scholar
  37. Gianinazzi-Pearson, V., Dumas-Gaudot, E., Gollotte, A., Tahiri-Alaoui, A. and Gianinazzi, S. 1996. Cellular and molecular defence-related root responses to invasion by arbuscular mycorrhizal fungi. New Phytol. 133: 45–57.CrossRefGoogle Scholar
  38. Gill, W.M., Guerin-Laguette, A., Lapeyrie, F. and Suzuki, K. 2000. Matsutake – morphological evidence of ectomycorrhizal formation between Tricholoma matsutake and host roots in a pure Pinus densiflora forest stand. New Phytol. 147: 381–388.CrossRefGoogle Scholar
  39. Guerin-Laguette, A., Plassard, C. and Mousain, D. 2000. Effects of experimental conditions on mycorrhizal relationships between Pinus sylvestris and Lactarius deliciosus and unprecedented fruit-body formation of the saffron milk cap under controlled soilless conditions. Can. J. Microbiol. 46: 790–799.CrossRefGoogle Scholar
  40. Guerin-Laguette, A., Matsushita, N., Lapeyrie, F., Shindo, K. and Suzuki, K. 2005. Successful inoculation of mature pine with Tricholoma matsutake. Mycorrhiza 15: 301–305.CrossRefGoogle Scholar
  41. Hung, L.-L. and Molina, R. 1986. Temperature and time in storage influence the efficacy of selected isolates of fungi in commercially produced ectomycorrhizal inoculum. For. Sci. 32: 534–545.Google Scholar
  42. Hung, L.L. and Sylvia, D.M. 1988. Inoculum production by vesicular-arbuscular mycorrhizal fungi in aeroponic culture. Appl. Environ. Microbiol. 54: 353–357.Google Scholar
  43. Hutchison, L.J. 1999. Lactarius. In: Cairney, J.W.G., Chambers, S.M. (eds.), Ectomycorrhizal Fungi: Key Genera in Profile. Springer, Berlin Heidelberg New York, pp. 269–285.Google Scholar
  44. Ishida, T.A., Nara, K., Tanaka, M., Kinoshita, A. and Hogetsu, T. 2008. Germination and infectivity of ectomycorrhizal fungal spores in relation to their ecological traits during primary succession. New Phytol. 180: 491–500.CrossRefGoogle Scholar
  45. Ito, T. and Yokoyama, T. 1983. Preservation of basidiomycete cultures by freezing. IFO Res. Commun. 11: 60–70.Google Scholar
  46. Iwase, K. 1992. Induction of basidiospore germination by gluconic acid in the ectomycorrhizal fungus Tricholoma robustum. Can. J. Bot. 70: 1234–1238.CrossRefGoogle Scholar
  47. Jarstfer, A.G. and Sylvia, D.M. 1999. Aeroponic culture of VAM fungi. In: Varma, A., Hock, B. (eds.), Mycorrhiza. Structure, Function, Molecular Biology and Biotechnology. 2nd edition. Springer, Berlin, pp. 427–441.Google Scholar
  48. Johnson, C.R. and Hummel, R.L. 1985. Influence of mycorrhizae and drought stress on growth of Poncirus x Citrus seedlings. HortScience 20: 754–755.Google Scholar
  49. Jong, S.C. and Davis, E.E. 1987. Germplasm preservation of edible fungi in culture through cryogenic storage. International symposium on scientific and technical aspects of cultivating edible fungi, University Park, Vol. 10, pp. 213–225.Google Scholar
  50. Kikuchi, K., Matsushita, N. and Suzuki, K. 2006. Germination of Suillus bovinus spores in vitro. Nippon Kingakukai Kaiho 47: 37–40 (in Japanese with summary in English).Google Scholar
  51. Kikuchi, K., Matsushita, N., Suzuki, K. and Hogetsu, T. 2007. Flavonoids induce germination of basidiospores of the ectomycorrhizal fungus Suillus bovinus. Mycorrhiza 17: 563–570.CrossRefGoogle Scholar
  52. Kim K.Y., Cho Y.S., Sohn B.K., Park R.D., Shim J.H., Jung S.J., Kim Y.W. and Seong, K.Y. 2002. Cold storage of mixed inoculum enhanced colonization and growth-promoting activity of G. intraradices compared to freshly prepared inoculum. Plant Soil 38: 267–272.CrossRefGoogle Scholar
  53. Kope, H.H. and Fortin, J.A. 1990. Germination and comparative morphology of basidiospores of Pisolithus arhizus. Mycologia 82: 350–357.CrossRefGoogle Scholar
  54. Krupa, P., Piotrowska-Seget, Z., (2003). Positive aspects of interaction between plants and mycorrhizal fungi originating from soils polluted with cadnium. Pol. j. environ. stud. 12: 723–726Google Scholar
  55. Kropáček, K., Cudlin, P., and Mejstřík, V. (1990) The use of granulated ectomycorrhizal inoculum for reforestation of deteriorated regions. Agr. Ecosyst. Environ. 28: 263–269.Google Scholar
  56. Kuek, C. 1994. Issues concerning the production and use of inoculants of ectomycorrhizal fungi in increasing the economic productivity of plantations. In: Robson, A.D., Abbott, L.K., Malajczuk, N. (eds.), Management of Mycorrhizas in Agriculture, Horticulture and Forestry. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 221–230.Google Scholar
  57. Kuek, C., Tommerup, I.C. and Malajczuck, N. 1992. Hydrogel bead inoculants for the production of ectomycorrhizal eucalyptus for plantations. Mycol. Res. 96: 273–277.CrossRefGoogle Scholar
  58. Lamb, R.J. and Richards, B.N. 1974a. Inoculation of pines with mycorrhizal fungi in natural soils-I. Soil Biol. Biochem. 6: 167–171.CrossRefGoogle Scholar
  59. Lamb, R.J. and Richards, B.N. 1974b. Inoculation of pines with mycorrhizal fungi in natural soils-II. Soil Biol. Biochem. 6: 173–177.CrossRefGoogle Scholar
  60. Lehto, T., Brosinsky, A., Heinonen-Tanski, H. and Repo, T. 2008. Freezing tolerance of ectomycorrhizal fungi in pure culture. Mycorrhiza 18: 385–392.CrossRefGoogle Scholar
  61. Martín, M.P. and Gràcia, E. 2000. Spore germination and development of young mycelia in some rhizopogon species. Acta. Bot. Barc. 46: 31–46.Google Scholar
  62. Mauperin, C.H., Mortier, F., Garbaye, J., Le Tacon, F. and Carr, G. 1987. Viability of an ectomycorrhizal inoculum produced in a liquid medium and entrapped in a calcium alginate gel. Can. J. Bot. 65: 2329–2336.CrossRefGoogle Scholar
  63. Melin, E. 1962. Physiological aspects of mycorrhizae of forest trees. In: Kozlowski, T.T. (ed.), Tree Growth. Ronald Press, New York, NY, pp. 247–263.Google Scholar
  64. Menge, J.A. 1984. Inoculum production. In: Powell, C.L., Bagyaraj, D.J. (eds.), VA Mycorrhizae. CRC Press, Boca Raton, FL, pp. 187–203.Google Scholar
  65. Mohammad, A., Khan, A.G. and Kuek, C. 2000. Improved aeroponic culture of inocula of arbuscular mycorrhizal fungi. Mycorrhiza 9: 337–339.CrossRefGoogle Scholar
  66. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco cultures. Physiol. Plant 15: 473–497.CrossRefGoogle Scholar
  67. Nagarajan, S. and Singh, D.V. 1990. Long-distance dispersion of rust pathogens. Annu. Rev. Phytopathol. 28: 139–153.CrossRefGoogle Scholar
  68. Nemec, S. and Ferguson, J.J. 1985. A fluid-drilling applicator for applying VAM in the field. In: Molina, R. (ed.), Proceedings of the 6th North American Conference on Mycorrhizae. Oregon State University, Corvallis, p. 244.Google Scholar
  69. Ogawa, M. 1975a. Microbial ecology of mycorrhizal fungus, Tricholoma matsutake Ito et Imai (Sing.) in pine forest I Fungal colony (‘shiro’) of Tricholoma matsutake. Bull. Gov. For. Exp. Stn. Tokyo 272: 79–121.Google Scholar
  70. Ogawa, M. 1975b. Microbial ecology of mycorrhizal fungus, Tricholoma matsutake Ito et Imai (Sing.) in pine forest II Mycorrhiza formed by Tricholoma matsutake. Bull. Gov. For. Exp. Stn. Tokyo 278: 21–49.Google Scholar
  71. Ogawa, M. 1977. Microbial ecology of mycorrhizal fungus, Tricholoma matsutake Ito et Imai (Sing.) in pine forest I The shiro of T. matsutake in the fungal community. Bull. Gov. For. Exp. Stn. Tokyo 297: 59–104.Google Scholar
  72. Oort, A.J.P. 1974. Activation of spore germination in Lactarius species by volatile compounds of Ceratocystis fagacearum. Proc. K. Ned. Akad. Wet. Ser. C 77: 301–307.Google Scholar
  73. Parladé, J., Pera, J. and Luque, J. 2004. Evaluation of mycelial inocula of edible Lactarius species for the production of Pinus pinaster and P. sylvestris mycorrhizal seedlings under greenhouse conditions. Mycorrhiza 14: 171–176.CrossRefGoogle Scholar
  74. Rodrigues, L.S., Kasuya, M.C.M. and Borges, A.C. 1999. Viability of ectomycorrhizal fungus mycelium entrapped in calcium alginate gel. Mycorrhiza 8: 263–266.CrossRefGoogle Scholar
  75. Rossi, M.J., Furigo, A. Jr. and Oliveira V.L. 2007. Inoculant production of ectomycorrhizal fungi by solid and submerged fermentations. Food Technol. Biotechnol. 45: 277–286.Google Scholar
  76. Sharma, A.K., Singh, C. and Akhauri, P. 2000.Mass culture of arbuscular mycorrhizal fungi and their role in biotechnology. Proc. Indian Natl. Sci. Acad. (PINSA) 66: 223–238.Google Scholar
  77. Siddiqui, Z.A. and Mahmood, I. 1995. Role of plant symbionts in nematode management, A Review. Bioresour. Technol. 54: 217–226.CrossRefGoogle Scholar
  78. Siddiqui, Z.A. and Mahmood, I. 1998. Effect of a plant growth promoting bacterium, an AM fungus and soil types on the morphometrics and reproduction of Meloidogyne javanica on tomato. Appl. Soil Ecol. 8: 77–84.CrossRefGoogle Scholar
  79. Siddiqui, Z.A. and Pichtel, J. 2008. Mycorrhizae: an overview. In: Siddiqui, Z.A., Akhtar, M.S., Futai, K. (eds.), Mycorrhizae: Sustainable Agriculture and Forestry. Springer, Dordrecht, The Netherlands, pp. 1–35, 362.CrossRefGoogle Scholar
  80. Singh, G., Tilak, K.V.B.R. 2001. Techniques of AM fungus inoculum production. In: Mukerji, K.G., Manoharachary, C., Chamola, B.P. (eds.), Techniques in Mycorrhizal Studies. Kluwer Academic Publishers, The Netherlands, pp. 273–283.Google Scholar
  81. Smith, S.E. and Read, D.J. 1997. Mycorrhizal Symbiosis. 2nd ed. Academic Press, London, 605 pp. ISBN 0-12-652840-3.Google Scholar
  82. St-Arnaud, M., Hamel, C., Vimard, B., Caron, M. and Fortin, J.A. 1996. Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus G. intraradices in an in vitro system in the absence of host roots. Mycol. Res. 100: 328–332.CrossRefGoogle Scholar
  83. Theodorou, C. 1971. Introduction of mycorrhizal fungi into soil by spore inoculation of seed. Aust. For. 35: 23–26.Google Scholar
  84. Tibbett, M., Sanders, F.E. and Cairney, J.W.G. 1999. Long-term storage of ectomycorrhizal basidiomycetes (Hebeloma spp.) at low temperature. J. Basic Microbiol. 39: 381–384.CrossRefGoogle Scholar
  85. Trappe, J.M. 1962. Fungus associates of ectotrophic mycorrhizae. Bot. Rev. 28: 538–606.CrossRefGoogle Scholar
  86. Trappe, J.M. 1977. Selection of fungi for ectomycorrhizal inoculation in nurseries. Annu. Rev. Phytopathol. 15: 203–222.CrossRefGoogle Scholar
  87. Turk, M.A., Assaf, T.A., Hameed, K.M. and Al-Tawaha, A.M. 2006. Significance of mycorrhizae. World J. Agric. Sci. 2: 16–20.Google Scholar
  88. Varma, A. and Schuepp, H. 1995. Mycorrhization of the commercially important micropropagated plants. In: Stewart, G.G., Russell, I. (eds.), Critical Reviews in Biotechnology. CRC Press, Canada, pp. 313–328.Google Scholar
  89. Vassilev, N., Nikolaeva, I. and Vassileva, M. 2005. Polymer based preparation of soil inoculants: Applications to arbuscular mycorrhizal fungi. Rev. Environ. Sci. Biotechnol. 4: 235–243.CrossRefGoogle Scholar
  90. Von, A. 1998. State of commercial use of AMF-inoculum in Germany. In: Gianinazzi, S., Schuepp, H. (eds.), Arbuscular Mycorrhizas in Sustainable Soil-Plant Systems. Report of 1997 Activities, Cost Action 821, Iceland, p. 153.Google Scholar
  91. Vosatka, M., Jansa, J., Regver, M., Sramek, F. and Malcova, R. 1999. Inoculation with mycorrhizal fungi – a feasible biotechnology for horticulture. Phyton Annu. Rev. Bot. 39: 219–224.Google Scholar
  92. Wang, Y., Hall, I.R. and Evans, L.A. 1997. Ectomycorrhizal fungi with edible fruiting bodies. I. Tricholoma matsutake and related fungi. Econ. Bot. 51: 311–327.CrossRefGoogle Scholar
  93. Weathers, P.J. and Zobel, R.W. 1992. Aeroponics for the culture of organisms, tissues and cells. Biotechnol. Adv. 10: 93–115.CrossRefGoogle Scholar
  94. Webster, G., Poulton, P.R., Cocking, E.C. and Davey, M.R. 1995. The nodulation of micropropagated plants of Parasponia andersonii by tropical legume rhizobia. J. Exp. Biol. 46: 1131–1137.Google Scholar
  95. Wu, C.-G., Lir, Y.S. and Huang, L.L. 1995. Spore development of Entrophospora kentinensis in an aeroponic system. Mycologia 87: 582–587.CrossRefGoogle Scholar
  96. Yamada, A., Maeda, K. and Ohmasa, M. 1999. Ectomycorrhiza formation of Tricholoma ­matsutake isolates on seedlings of Pinus densiflora in vitro. Mycoscience 40: 455–463.CrossRefGoogle Scholar
  97. Yoshimura, F. 2004.This is how far we’ve got! Matsutake cultivation. Toronto, 109 pp (in Japanese).Google Scholar
  98. Zobel, R.W., Del Tredici, P. and Torrey J.G. 1976. Methods for growing plants aeroponically. Plant Physiol. 57: 344–346.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of BotanyAligarh Muslim UniversityAligarhIndia

Personalised recommendations