Baculovirus Pesticides: Present State and Future Perspectives

  • Flavio MoscardiEmail author
  • Marlinda Lobo de Souza
  • Maria Elita Batista de Castro
  • Mauricio Lara Moscardi
  • Boguslaw Szewczyk


Baculoviruses pesticides are ideal tools in integrated pest management programs as they are usually highly specific to their host insects; thus, they do not affect other arthropods including pest predators and parasitoids. They are also safe to vertebrates and plants and to the biosphere. Over 50 baculovirus products have been used against different insect pests worldwide, and all have been produced in vivo, mostly on insects reared on artificial diets. However, there are cases of significant viral production in the field by applying a baculovirus against natural populations of the insect host and collecting dead or moribund larvae for further processing into a formulated product. Despite the considerable number of programs worldwide utilizing baculoviruses as biopesticides, their use is still low compared to another biological insecticide based on the bacterium Bacillus thuringiensis Berliner. As of the present, there are no programs using in vitro commercial production of baculovirus due to several technical limitations, and further developments in this area are much needed. Use of the baculovirus of the velvetbean caterpillar in Brazil has experienced a setback over the past 7 years due to modifications in cultural practices by soybean growers. Slow speed of kill by viral pesticides is a limitation that has led to considerable research effort toward developing faster killing agents through genetic modifications by either deleting or inserting toxin genes from scorpions and spiders into their genomes. However, these GMOs have not been used in practice due to significant resistance by the public to modified baculovirus genomes. Effective public extension services and farmer education toward application of biopesticides are much needed to expand the use of these products worldwide.


Insect Cell Artificial Diet Recombinant Virus Toxin Gene Recombinant Baculovirus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Agathos, S. N. 1996. Insect cell bioreactors. Cytotechnology 20:173–189.CrossRefGoogle Scholar
  2. Arthurs, S. P., and Lacey, L. A. 2004. Field evaluation of commercial formulations of the codling moth granulovirus: persistence of activity and success of seasonal applications against natural infestations of codling moth in Pacific Northwest apple orchards. Biol. Control 31:388–397.CrossRefGoogle Scholar
  3. Bangham, C. R. M., and Kirkwood, T. B. L. 1990. Defective interfering particles: effects in modulating virus growth and persistence. Virology 179:821–826.CrossRefGoogle Scholar
  4. Bellotti, A. C. 1999. Recent advances in cassava pest management. Annu. Rev. Entomol. 44:345–370.CrossRefGoogle Scholar
  5. Blissard, G. W. 1996. Baculovirus-insect cell interactions. Cytotechnology 20:73–93.CrossRefGoogle Scholar
  6. Bloomquist, J. R. 1996. Ion channels as targets for insecticides. Annu. Rev. Entomol. 41:163–190.CrossRefGoogle Scholar
  7. Bonning, B. C., and Hammock, B. D. 1996. Development of recombinant baculoviruses for insect control. Annu. Rev. Entomol. 41:191–210.CrossRefGoogle Scholar
  8. Bonning, B. C., Roelvink, P. W., Vlak J. M., Possee R. D., and Hammock B. D. 1994. Superior expression of juvenile hormone esterase and b-galactosidase from the basic promoter of Autographa californica nuclear polyhedrosis virus compared to the p10 and polyhedrin promoters. J. Gen. Virol. 75:1551–1556.CrossRefGoogle Scholar
  9. Boughton, A. J., Obrycki J. J., and Bonning B. C. 2003. Effects of a protease-expressing recombinant baculovirus on nontarget insect predators of Heliothis virescens. Biol. Control 28:101–110.CrossRefGoogle Scholar
  10. Boyce, F. M., and Bucher, N. L. R. 1996. Baculovirus-mediated gene transfer into mammalian cells. Proc. Natl. Acad.Sci.USA 93:2348–2352.CrossRefGoogle Scholar
  11. Braunagel, S. C., Russell, W. K., Rosas-Acosta, G., Russell, D. H., and Summers, M. D. 2003. Determination of protein composition of the occlusion-derived virus of Autographa californica nucleopolyhedrovirus. Proc. Natl. Acad. Sci. USA 100:9797–9802.CrossRefGoogle Scholar
  12. Bueno, R. C. O. F., Parra, J. R. P., Bueno, A. F., Moscardi, F., Oliveira, J. R. G., and Camillo, M. F. 2007. Sem barreira. Cultivar 55:12–15.Google Scholar
  13. Burden J. P., Hails, R. S., Windass J. D., Suner M. M., and Cory, J. S. 2000. Infectivity, speed of kill, and productivity of a baculovirus expressing the itch mite toxin txp-1 in second and fourth instar larvae of Trichoplusiani. J. Invertebr. Pathol. 75:226–236.CrossRefGoogle Scholar
  14. Carbonell, L. F., Hodg, M. R., Tomalski, M. D., and Miller, L. K. 1988. Synthesis of a gene coding for an insect specific scorpion neurotoxin and attempts to express it using baculovirus vectors. Gene 3:409–418.CrossRefGoogle Scholar
  15. Cestele S, and Catterall W. A. 2000. Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie 82:883–892.CrossRefGoogle Scholar
  16. Chakraborty, S., and Reid. S. 1999. Serial passage of a Helicoverpa armigera nucleopolyhedrovirus in Helicoverpa zea cell cultures. J. Gen. Virol. 73:303–308.Google Scholar
  17. Chakraborty, S., Monsour, C., Teakle, R., and Reid, S.1999. Yield, biological activity, and field performance of a wild-type Helicoverpa nucleopolyhedrovirus produced in H. zea cell cultures. J. Invertebr. Pathol. 73:199–205.CrossRefGoogle Scholar
  18. Chang, J. H., Choi, J. Y., Jin, B. R., Roh, J. Y., Olszewski, J. A., Seo, S. J., et al. 2003. An improved baculovirus insecticide producing occlusion bodies that contain Bacillus thuringiensis insect toxin. J. Invertebr. Pathol. 84:30–37.CrossRefGoogle Scholar
  19. Chejanovsky, N., Zilberberg, N., Rivkin, H., Zlotkin, E., and Gurevitz, M. 1995. Functional expression of an alpha-insect scorpion neurotoxin in insect cells and lepidopterous larvae. FEBS Lett. 376:181–184.CrossRefGoogle Scholar
  20. Copping, L. G., and Menn, J. J. 2000. Biopesticides: a review of their action, applications and efficacy. Pest Manag. Sci. 56:651–676CrossRefGoogle Scholar
  21. Corrêa-Ferreira, B. S., Alexandre, T. M., Pellizzaro, E. C., Moscardi, F., and Bueno, A. F. 2010. Práticas de manejo de pragas utilizadas na soja e seu impacto sobre a cultura. Embrapa Soja, Londrina, PR, Circular Técnica 78, 15p.Google Scholar
  22. Cunningham, J. C. 1995. Baculoviruses as microbial insecticides. In Novel Approaches to Integrated Pest Management, ed. R. Reuvei, pp. 261–292. Boca Raton: Lewis.Google Scholar
  23. Elazar, M., Levi, R., and Zlkotkin, E. 2001. Targeting of an expressed neurotoxin by its recombinant baculovirus. J. Exp. Biol. 204:2637–2645.Google Scholar
  24. Eldridge, R., Horodyski, F. M., Morton, D. B., O’Reilly, D., Truman, J. W., Riddiford L. M., and Miller, L. K. 1991. Expression of an eclosion hormone gene in insect cells using baculovirus vectors. Insect Biochem. 21:341–351.CrossRefGoogle Scholar
  25. Erlandson, M. 2008. Insect pest control by viruses. Encyclopedia of Virology, Third Edition, 3:125–133.Google Scholar
  26. Fang, M., Dai, X., and Theilmann, D. A. 2007. Autographa californica multiple nucleopolyhedrovirus exon0 (ORF141) is required for efficient egress of nucleocapsids from the nucleus.J. Virol. 81:9859–9869.CrossRefGoogle Scholar
  27. Fang, M. G., Nie, Y. C., Harris, S., Erlandson, M. A., and Theilmann, D. A. 2009. Autographa californica multiple nucleopolyhedrovirus core gene ac96 encodes a per Os infectivity factor (pif-4). J. Virol. 83:12569–12578.CrossRefGoogle Scholar
  28. Faulkner, P., Kuzio, J., Williams, G. V., and Wilson, J. A. 1997. Analysis of p74, a PDV envelope protein of Autographa californica nucleopolyhedrovirus required for occlusion body infectivity in vivo. J. Gen. Virol. 78:3091–3100.Google Scholar
  29. Fraser, M. J., and Hink, W. F. 1982. The isolation and characterization of the MP and FP plaque variants of Galleria mellonella nuclear polyhedrosis virus. Virology 117:366–378.CrossRefGoogle Scholar
  30. Fraser, M. J., Smith, G. E., and Summers, M. D. 1983. Acquisition of host cell DNA sequences by baculoviruses: relationship between host DNA insertions and FP mutants of Autographa californica and Galleria mellonella nuclear polyhedrosis viruses. J. Virol. 47:287–300.Google Scholar
  31. Froy, O., Zilberberg, N., Chejanovsky, N., Anglister, J., Loret, E., Shaanan, B., et al. 2000. Scorpion neurotoxins: structure/function relationship and application in agriculture. Pest Manag.Sci. 56:472–474.CrossRefGoogle Scholar
  32. Gershburg, E., Stockholm, D., Froy, O., Rashi, S., Gurevitz, M., and Chejanovsky, N. 1998. Baculovirus-mediated expression of a scorpion depressant toxin improves the insecticidal efficacy achieved with excitatory toxins. FEBS Lett. 422:132–136.CrossRefGoogle Scholar
  33. Gopalakrishnan, B., Kramer, K. J., and Muthukrishnana, S. 1993. Properties of an chitinase produced in a baculovirus gene expression system. Abstr. Papers Am. Chem. Soc. 205, 79-Agro.Google Scholar
  34. Granados, R. R., Guoxun, L., Dersksen, A. C. G., and McKenna, K. A. 1994. A new insect cell line from Trichoplusia ni (BTI-Tn-5B1-4) susceptible to Trichoplusia ni single nuclear polyhedrosis virus. J. Invertebr. Pathol. 64:260–266.CrossRefGoogle Scholar
  35. Hammock, B. D., Bonning, B. C., Possee, R. D., Hanzlik, T. N., and Maeda, S. 1990. Expression and effects of the juvenile hormone esterase in a baculovirus vector. Nature 344:458–461.CrossRefGoogle Scholar
  36. Harrison, R. L., and Bonning, B. C. 2000. Use of scorpion neurotoxins to improve the insecticidal activity of Rachiplusia ou multicapsid nucleopolyhedrovirus. Biol. Control 17:191–201.CrossRefGoogle Scholar
  37. Harrison, R. L., and Bonning, B. C. 2001. Use of proteases to improve the insecticidal activity of baculoviruses. Biol. Control 20:199–209.CrossRefGoogle Scholar
  38. Harrison, R. L., and Jarvis, D. L. 2006. Protein N-glycosylation in the baculovirus-insect cell expression system and engineering of insect cells to produce “mammalianized” recombinant glycoproteins. Adv. Virus Res. 68:159–191.CrossRefGoogle Scholar
  39. Harrison, R. L., and Summers, M. D. 1995. Mutations in the Autographa californica multinucleocapsid nuclear polyhedrosis virus 25 kDa protein gene result in reduced virion occlusion, altered intranuclear envelopment and enhanced virus production. J. Gen. Virol. 76:1451–1459.CrossRefGoogle Scholar
  40. Hayakawa, T., Shimojo, E., Mori, M., Kaido, M., Furusawa, I., et al. 2000. Enhancement of baculovirus infection in Spodoptera exigua (Lepidoptera: Noctuidae) larvae with Autographa californica nucleopolyhedrovirus or Nicotiana tabacum engineered with a granulovirus gene. Appl. Entomol. Zool. 35:163–170.CrossRefGoogle Scholar
  41. Hefferon, K. L., Oomens, A. G. P., Monsma, S. A., Finnerty, C. M., and Blissard, G. W. (1999). Host cell receptor binding by baculovirus GP64 and kinetics of virion entry. Virology 258:455–468.CrossRefGoogle Scholar
  42. Herniou, E. A., and Jehle, J. A. 2007. Baculovirus phylogeny and evolution. Curr. Drug Targets 8:1043–1050.CrossRefGoogle Scholar
  43. Herniou, E. A., Luque, T., Chen, X., Vlak, J. M., Winstanley, D., Cory, J. S., and O’Reilly, D. R. 2001. Use of whole genome sequence data to infer baculovirus phylogeny. J. Virol. 75:8117–8126.CrossRefGoogle Scholar
  44. Herniou, E. A., Olszewski, J. A., Cory, J. S., and O’Reilly, D. R. 2003. The genome sequence and evolution of baculoviruses. Annu. Rev. Entomol. 48:211–234.CrossRefGoogle Scholar
  45. Herrmann, R., Moskowitz, H., Zlotkin, E., and Hammock, B. D. 1995. Positive cooperativity among insecticidal scorpion neurotoxins. Toxicon 33:1099–1102.CrossRefGoogle Scholar
  46. Hinton, A. C., and Hammock, B. D. 2003. In vitro expression and biochemical characterization of juvenile hormone esterase from Manduca sexta. Insect Biochem. Mol. Biol. 33:317–329.CrossRefGoogle Scholar
  47. Hitchman, R., Possee, R. D., and King, L. 2009. Baculovirus expression systems for recombinant protein production in insect cells. Recent Pat. Biotechnol. 3:46–54.CrossRefGoogle Scholar
  48. Hughes, P. R., Wood, H. A., Breen, J. P., Simpson, S. F., Duggan, A. J., and Dybas, J. A. 1997. Enhanced bioactivity of recombinant baculoviruses expressing insect-specific spider toxins in lepidopteran crop pests. J. Invertebr. Pathol. 69:112–118.CrossRefGoogle Scholar
  49. Ignoffo, C. M., and Couch, T. L. 1981. The nucleopolyhedrosis virus of Heliothis species as a microbial pesticide. In Microbial Control of Pests and Plant Diseases, ed. H. D. Burges, pp. 329–362. London: Academic Press.Google Scholar
  50. Ijkel, W. F., Westenberg, M., Goldbach, R. W., et al. 2000. A novel baculovirus envelope protein with a proprotein convertase cleavage site. Virology 275:30–41.CrossRefGoogle Scholar
  51. Ikonomou, L., Schneider, J. Y., and Agathos, S. N. 2003. Insect cell culture for industrial production of recombinant proteins. Appl. Microbiol. Biotechnol. 62:1–20.CrossRefGoogle Scholar
  52. Inceoglu, A. B., Kamita, S. G., Hinton, A. C., Huang, Q., Severson, T. F., Kang, K. D., and Hammock, B. D. 2001. Recombinant baculoviruses for insect control. Pest Manag. Sci. 57:981–987.CrossRefGoogle Scholar
  53. Inceoglu, A. B., Kamita, S. G., and Hammock, B. D. 2007. Genetically modified baculoviruses: a historical overview and future outlook. Adv. Virus Res. 68:323–360.CrossRefGoogle Scholar
  54. Jehle, J. A., Blissard, G. W., Bonning, B. C., Cory, J. S., Herniou, E. A., Rohrmann, G. F., Theilmann, D. A., Thiem, S. M., and Vlak, J. M. 2006. On the classification and nomenclature of baculoviruses: a proposal for revision. Arch. Virol. 151:1257–1266.CrossRefGoogle Scholar
  55. Jem, K. J., Gong, T., Mullen, J., and Georgis, R. 1997. Development of an industrial insect cell culture process for large scale production of baculovirus biopesticides. In Invertebrate Cell Culture: Novel Directions and Biotechnology Applications, eds. K. Maramorosch, and J. Mitsuhashi, pp. 173–180. New Hampshire: Science Publishers.Google Scholar
  56. Kamita, S. G., Kang, K. D., and Hammock, B. D. 2005a. Genetically modified baculoviruses for pest insect control. In Comprehensive Molecular Insect Science, eds. K. Iatrou, L. Gilbert, and S. Gill, pp. 271–322. Oxford: Elsevier.CrossRefGoogle Scholar
  57. Kamita, S. G., Nagasaka, K., Chua, J. W., Shimada, T., Mita, K., Kobayashi, M., Maeda, S., and Hammock B. D. 2005b. A baculovirus-encoded protein tyrosine phosphatase gene induces enhanced locomotory activity in a lepidopteran host. Proc. Natl. Acad. Sci. USA 102:2584–2589.CrossRefGoogle Scholar
  58. Kikhno, I., Gutiérrez, S., Croizier, L., Croizier, G., and Ferber, M. L. 2002. Characterization of pif, a gene required for the per os infectivity of Spodoptera littoralis nucleopolyhedrovirus. J. Gen. Virol. 83:3013–3022.Google Scholar
  59. Kitts, P. A., and Possee, R. D. 1993. A method for producing recombinant baculovirus expression vectors at high frequency. Biotechniques 14:810–817.Google Scholar
  60. Kitts, P. A., Ayres, M. D., and Possee, R. D. 1990. Linearization of baculovirus DNA enhances the recovery of recombinant virus expression vectors. Nucleic Acids Res. 18:5667–5672.CrossRefGoogle Scholar
  61. Kool, M., Voncken, J. W., Van Lier, F. L., Tramper, and J., Vlak, J. M. 1991. Detection and analysis of Autographa californica nuclear polyhedrosis virus mutants with defective interfering properties. Virology 183:739–746.CrossRefGoogle Scholar
  62. Kost, T. A., Condreay, J. P., and Jarvis, D. L. 2005. Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat. Biotechnol. 23:567–575.CrossRefGoogle Scholar
  63. Krell, P. J. 1996. Passage effect of virus infection in insect cells. Cytotechnology 20:125–137.CrossRefGoogle Scholar
  64. Kreutzweiser, D., England, L., Shepherd, J., Conklin, J., and Holmes, S. 2001. Comparative effects of a genetically engineered insect virus and a growth-regulating insecticide on microbial communities in aquatic microcosms. Ecotoxicol. Environ. Saf. 48:85–98.CrossRefGoogle Scholar
  65. Kumari, V., and Singh, N. P. 2009. Spodoptera litura nuclear polyhedrosis virus (NPV-S) as a component in Integrated Pest Management (IPM) of Spodoptera litura (Fab.) on cabbage. J. Biopestic. 2:84–86.Google Scholar
  66. Kutinkova, H., Samietz, J., Dzhuvinov, V., and Tallot, Y. 2008. Use of Carpovirusine for control of the codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae), in Bulgaria: Progress report. J. Biopestic. 1:38–40.Google Scholar
  67. Kuzio, J., Jaques, R., and Faulkner P. 1989. Identification of p74, a gene essential for virulence of baculovirus occlusion bodies. Virology 173:759–763.CrossRefGoogle Scholar
  68. Li, J., Heinz, K. M., Flexner, J. L., and McCutchen, B. F. 1999. Effects of recombinant baculoviruses on three nontarget heliothine predators. Biol. Control 15:293–302.CrossRefGoogle Scholar
  69. Li, Q. J., Li, L. L., Moore, K., Donly, C., Theilmann, D. A. et al. 2003. Characterization of Mamestra configurata nucleopolyhedrovirus enhancin and its functional analysis via expression in an Autographa californica M nucleopolyhedrovirus recombinant. J. Gen. Virol. 84:123–132.CrossRefGoogle Scholar
  70. Li, H., Tang, H., Harrison, R. L., and Bonning, B. C. 2007. Impact of a basement membrane-degrading protease on dissemination and secondary infection of Autographa californica multiple nucleopolyhedrovirus in Heliothis virescens (Fabricius). J. Gen. Virol. 88:1109–1119.CrossRefGoogle Scholar
  71. Lua, L. H. L., Pedrini, M. R. S., Reid, S., Robertson, A., and Tribe, D. E. 2002. Phenotypic and genotypic analysis of Helicoverpa armigera nucleopolyhedrovirus serially passed in cell culture. J. Gen. Virol. 83:945–955.Google Scholar
  72. Lucarotti, C. J., Moreau, G., and Kettela, E. G. 2007. Abietiv, a viral biopesticide for control of the balsam fir sawfly. In Biological Control: A Global Perspective, eds. C. Vincent, M. S. Goethel, and G. Lazarovits, pp. 353–361. Oxfordshire, UK, and Cambridge, USA: CAB International.CrossRefGoogle Scholar
  73. Luckov, V. A., Lee, S. C., Barry, G. F., and Olins, P. O. 1993. Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J. Virol. 67:4566–4579.Google Scholar
  74. Lung, O., Westenberg, M., Vlak, J. M., Zuidema, D., and Blissard, G. W. 2002. Pseudotyping Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV): F proteins from group II NPVs are functionally analogous to AcMNPV GP64. J. Virol. 76:5729–5736.CrossRefGoogle Scholar
  75. Ma, P. W. K., Davis, T. R., Wood, H. A., Knipple, D. C., and Roelofs, W. L. 1998. Baculovirus expression of an insect gene that encodes multiple neuropeptides. Insect Biochem. Mol. Biol. 28:239–249.CrossRefGoogle Scholar
  76. Maeda, S. 1989. Increased insecticidal effect by a recombinant baculovirus carrying a synthetic diuretic hormone gene. Biochem. Biophys. Res. Commun. 165:1177–1183.CrossRefGoogle Scholar
  77. Maeda, S., Volrath, S. L., Hanzlik, T. N., Harper, S. A., Majima, K., Maddox, D. W. et al. 1991. Insecticidal effects of an insect-specific neurotoxin expressed by a recombinant baculovirus. Virology 184:77–80.CrossRefGoogle Scholar
  78. McCutchen, B. F., Hoover, K., Preisler, H. K., Betana, M. D., Herrmann, R., Robertson, J. L., and Hammock, B. D. 1997. Interaction of recombinant and wild-type baculoviruses with classical insecticides and pyrethroid-resistant tobacco budworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 90:1170–1180.Google Scholar
  79. McNitt, L., Espelie, K. E., and Miller, L. K. 1995. Assessing the safety of toxin-producing baculovirus biopesticides to a non-target predator, the social wasp Polistes metricus Sey. Biol.Control 5:267–278.CrossRefGoogle Scholar
  80. Mishra, S. 1998. Baculoviruses as pesticides. Curr. Sci. 75:1015–1022.Google Scholar
  81. Monsma, S. A., Oomens, A. G., and Blissard, G. W. 1996. The GP64 envelope fusion protein is an essential baculovirus protein required for cell-to-cell transmission of infection. J. Virol. 70:4607–4616.Google Scholar
  82. Morales, L., Moscardi, F., Sosa-Gomez, D. R., Paro, F. E., and Soldorio, I. L. 2001. Fluorescent brighteners improve Anticarsia gemmatalis (Lepidoptera: Noctuidae) nucleopolyhedrovirus (AgMNPV) activity on AgMNPV susceptible and resistant strains of the insect. Biol. Control 20:247–253.CrossRefGoogle Scholar
  83. Moscardi, F. 1989. Use of viruses for pest control in Brazil: the case of the nuclear polyhedrosis virus of the soybean caterpillar, Anticarsia gemmatalis. Mem. Inst. Oswaldo Cruz 84:51–56.CrossRefGoogle Scholar
  84. Moscardi, F. 1999. Assessment of the application of baculoviruses for control of Lepidoptera. Annu. Rev. Entomol. 44:257–289.CrossRefGoogle Scholar
  85. Moscardi, F. 2007. A Nucleopolyhedrovirus for control of the velvetbean caterpillar in Brazilian Soybeans. In Biological Control: A Global Perspective, eds. C. Vincent, M. S. Goethel, and G. Lazarovits, pp. 344–352. Oxfordshire, UK, and Cambridge, USA: CAB International.CrossRefGoogle Scholar
  86. Moscardi, F., and Sosa-Gómez, D. R. 1996. Soybean in Brazil. In Biotechnology and Integrated Pest Management, ed. G. J. Persley, pp. 98–112. Wallingford: CAB international.Google Scholar
  87. Moscardi, F., Leite, L. G., and Zamataro, C. E. 1997. Production of nuclear polyhedrosis virus of Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae): effect of virus dosage, host density and age. Ann. Soc. Entomol. Brasil 26:121–132.Google Scholar
  88. Nakamura T. 2003. Control of leafrollers in tea fields using “Hamaki tenteki”.
  89. Nishi, Y., and Nonaka, T. 1996. Biological control of the tea tortrix using granulosis virus in the tea field. Agrochem. Jpn. 69:7–10.Google Scholar
  90. O’Reilly, D. R., and Miller, L. K. 1991. Improvement of a baculovirus pesticide by deletion of the egt gene. Biotechnology 9:1086–1089.CrossRefGoogle Scholar
  91. O’Reilly, D. R., Miller, L. K., and Luckov, V. A. 1992. The Baculovirus Expression System: A Laboratory Manual. New York: Freeman.Google Scholar
  92. O’Reilly, D. R., Kelly, T. J., Masler, E. P., Thyagaraja, B. S., Robson, R. M., Shaw, T. C., and Miller, L. K. 1995. Overexpression of Bombyx mori prothoracicotropic hormone using baculovirus vectors. Insect Biochem. Mol. Biol. 25:45–85.Google Scholar
  93. Ohkawa, T., Washburn, J. O., Sitapara, R., Sid, E., and Volkman, L. E. 2005. Specific binding of Autographa californica M Nucleopolyhedrovirus occlusion-derived virus to mdgut cells of Heliothis virescens larvae is mediated by products of pif genes Ac119 and Ac022 but not by Ac115. J. Virol. 79:15258–15264.CrossRefGoogle Scholar
  94. Olszewski, J., and Miller, L. 1997. Identification and characterization of a baculovirus structural protein, VP1054, required for nucleocapsid formation. J. Virol. 71:5040–5050.Google Scholar
  95. Pearson, M., Groten, C., and Rohrmann, G. F. 2000. Identification of the Lymantria dispar nucleopolyhedrovirus envelope fusion protein provides evidence for a phylogenetic division of Baculoviridae. J. Virol. 74:6126–6131.CrossRefGoogle Scholar
  96. Pedrini, M. R. S., Wolff, J. L. C., and Reid, S. 2004. Fast accumulation of Few Polyhedra mutants during passage of a Spodoptera frugiperda multicapsid nucleopolyhedrovirus (Baculoviridae) in Sf9 cell cultures. Ann. Appl. Biol. 145:107–112.CrossRefGoogle Scholar
  97. Pedrini, M. R. S., Nielsen, L. K., Reid, S., and Chan, L. C. L. 2005. Properties of a unique mutant of Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus that exhibits a partial Many Polyhedra and Few Polyhedra phenotype on extended serial passaging in suspension cell cultures. In Vitro Cell. Dev. Biol. Anim. 41:289–297.CrossRefGoogle Scholar
  98. Pedrini, M. R. S., Christian, P., Nielsen, L. K., Reid, S., and Chan, L. C. L. 2006. Importance of virus-medium interactions on the biological activity of wild-type Heliothine nucleopolyhedroviruses propagated via suspension insect cell cultures. J. Virol. Methods 136:267–272.CrossRefGoogle Scholar
  99. Pijlman, G. P., van den Born, E., Martens, D. E., and Vlak, J. M. 2001. Autographa californica baculoviruses with large genomic deletions are rapidly generated in infected cells. Virology 283:132–138.CrossRefGoogle Scholar
  100. Pijlman, G. P., Pruijssers, A. J. P., and Vlak, J. M. 2003. Identification of pif-2, a third conserved baculovirus gene required for per os infection of insects. J. Gen. Virol. 84:2041–2049.CrossRefGoogle Scholar
  101. Popham, H. J. R., Li, Y., and Miller, L. K. 1997. Genetic improvement of Helicoverpa zea polyhedrosis virus as a biopesticide. Biol. Control 10:83–91.CrossRefGoogle Scholar
  102. Raman, K. V., Alcazar, J., and Valdez, A. 1992. Biological control of the potato tuber moth using Phthorimaea baculovirus. Int. Potato Cent. Lima, CIP Train. Bull. 2, 27 p.Google Scholar
  103. Reardon, R., Podgwaite, J. P., and Zerillo, R. T. 1996. GYPCHECK – the gypsy moth nucleopolyhedrosis virus product. USDA Forest Service Publication FHTET-96 – 16.Google Scholar
  104. Regev, A., Rivkin, H., Inceoglu, B., Gershburg, E., Hammock, B. D., Gurevitz, M., and Chejanovsky, N. 2003. Further enhancement of baculovirus insecticidal efficacy with scorpion toxins that interact cooperatively. FEBS Lett. 537:106–110.CrossRefGoogle Scholar
  105. Rezende, S. H. M. S., Castro, M. B. C., and Souza, M. L. 2009. Accumulation of few-polyhedra mutants upon serial passage of Anticarsia gemmatalis multiple nucleopolyhedrovirus in cell culture. J. Invertebr. Pathol. 100:153–159.CrossRefGoogle Scholar
  106. Rhodes, D. J. 1996. Economics of baculovirus-insect cell production systems. Cytotechnology 20:291–297.CrossRefGoogle Scholar
  107. Rohrmann, G. F. 2008a. Baculovirus Molecular Biology. Bethesda: National Library of Medicine (US), NCBI.Google Scholar
  108. Rohrmann, G. F. 2008b. Structural proteins of baculovirus occlusion bodies and virions. In Baculovirus Molecular Biology, ed. G. F. Rohrmann. Bethesda: NCBI.Google Scholar
  109. Roy, P. 1992. From genes to complex structures of bluetongue virus and their efficacy as vaccines. Vet.Microbiol. 33:155–68.CrossRefGoogle Scholar
  110. Santos, B. 2003. Avanços na produção massal de lagartas de Anticarsia gemmatalis Hübner 1818 (Lepidoptera: Noctuidae) infectadas com o seu vírus de poliedrose nuclear, em laboratório e do bioinseticida à base desse vírus. PhD thesis, Universidade Federal do Paraná, Curitiba, Brazil.Google Scholar
  111. Shapiro, M. 1995. Radiation protection and activity enhancement of viruses. In Biorational Pest Control Agents: Formulation and Delivery, ed. F. R. Hall, pp. 153–164. Washington, DC: American Chemical Society.CrossRefGoogle Scholar
  112. Slavicek, J. M., and Popham, H. J. 2005. The Lymantria dispar nucleopolyhedrovirus enhancins are components of occlusion-derived virus. J. Virol. 79:10578–10588.CrossRefGoogle Scholar
  113. Slavicek, J. M., Mercer, M., Kelly, M., and Hayes-Plazolles, N. 1996, Isolation of a baculovirus variant that exhibits enhanced polyhedra production stability during serial passage in cell culture. J. Invertebr. Pathol. 67:153–160.CrossRefGoogle Scholar
  114. Slavicek, J. M., Hayes-Plazolles, N., and Kelly, M. E. 2001. Identification of a Lymantria dispar nucleopolyhedrovirus isolate that does not accumulate few-polyhedra mutants during extended serial passage in cell culture. Biol. Control 22:159–168.CrossRefGoogle Scholar
  115. Smith, C. R., Heinz, K. M., Sanson, C. G., and Flexner, J. L. 2000. Impact of recombinant baculovirus field applications on a non-target heliothine parasitoid, Microplitis croceipes (Hymenoptera: Braconidae). J. Econ. Entomol. 93:1109–1117.CrossRefGoogle Scholar
  116. Sosa-Gómez, D. R., Delpin, K. E., Moscardi, F., and Nozaki, M. H. 2003. The impact of funcicides on Nomuraea rileyi (Farlow) Samson epizootics and on populations of Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae), on soybean. Neotrop. Entomol. 32:287–291.CrossRefGoogle Scholar
  117. Sosa-Gómez, D. R., Moscardi, F., Santos, B., Alves, L. F. A., and Alves, S. B. 2008. Produção e uso de vírus para o controle de pragas na América Latina. In Controle Microbiano de Pragas na América Latina: avanços e desafios, eds. S. B. Alves and R. B. Lopes, pp. 49–68. Piracicaba: FEALQ.Google Scholar
  118. Souza, M. L., Castro, M. E. B. de Sihler, W., Krol, E., and Szewczyk, B. 2007. Baculoviruses: a safe alternative in pest control? Pest Technol. 1:53–60.Google Scholar
  119. Srinivasa, M., Jagadeesh Babu, C. S., Anitha, C. N., and Girish, G. 2008. Laboratory evaluation of available commercial formulations of HaNPV against Helicoverpa armigera (Hub.). J. Biopestic. 1:138–139.Google Scholar
  120. Stewart, L. M., Hirst, M., Ferber, M. L., Merryweather, A. T., Cayley, P. J., and Possee, R. D. 1991. Construction of an improved baculovirus insecticide containing an insect-specific toxin gene. Nature (London) 352:85–88.CrossRefGoogle Scholar
  121. Summers, M. D., and Smith, G. E. 1987. A manual of methods for baculovirus vectors and insect cell culture procedures. Texas Agric. Exp. Stn. Bull. 1555, 57 p.Google Scholar
  122. Sun, X. L., and Peng, H. 2007. Recent advances in biological pest insects by using viruses in China. Virol. Sin. 22:158–162.CrossRefGoogle Scholar
  123. Sun, X., Wang, H., Sun, X., Chen, X., Peng, C., Pan, D., et al. 2004. Biological activity and field efficacy of a genetically modified Helicoverpa armigera SNPV expressing an insect-selective toxin from a chimeric promoter. Biol. Control 29:124–137.CrossRefGoogle Scholar
  124. Sun. X. L., Wang, H. L., Sun, X., Chen, X. W., van der Werf, W., Vlak, J. M., and Hu, Z. H. 2002. Evaluation of control efficacy and biosafety of genetically modified Helicoverpa armigera nucleopolyhedrovirus. Abstr. 7th Int. Symp. Biosafety Gen. Mod. Org., Beijing, China.Google Scholar
  125. Szewczyk, B., Hoyos-Carvajal, L., Paluszek, M., Skrzecz, I., and Souza, M. L. 2006. Baculovirus – re-emerging biopesticides. Biotechnol. Adv. 24:143–160.CrossRefGoogle Scholar
  126. Szewczyk, B., Rabalski, L., Krol, E., Sihler, W., and Souza, M. L. 2009. Baculovirus biopesticides – a safe alternative to chemical protection of plants. J. Biopestic. 2:209–216.Google Scholar
  127. Szolajska, E., Poznanski, J., Ferber, M. L., Michalik, J., Gout, E., Fender, P., Bailly, I., Dublet, B., and Chroboczek, J. 2004. Poneratoxin, a neurotoxin from ant venom. Structure and expression in insect cells and construction of a bio-insecticide. Eur. J. Biochem. 271:2127–2136.CrossRefGoogle Scholar
  128. Tanada, Y., and Kaya, H. K. 1993. Insect Pathology, ch. 6, pp. 171–244. San Diego and New York: Academic Press.Google Scholar
  129. Theilmann, D. A., Blissard, G. W., Bonning, B., Jehle, J. A., O’Reilly D. R., Rohrmann, G. F., Thiem, S., and Vlak, J. M. 2005. Baculoviridae. In Virus Taxonomy – Classification and Nomenclature of Viruses, 8th Report of the International Committee on Viruses, eds. C. X. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger, and L. A. Ball, pp. 177–185. Amsterdam: Elsevier.Google Scholar
  130. Tomalski, M. D., and Miller, L. K. 1991. Insect paralysis by baculovirus-mediated expression of a mite neurotoxin gene. Nature (London), 352:82–85.CrossRefGoogle Scholar
  131. Treacey, M. F., Rensner, P. E., and All, J. N. 2000. Comparative insecticidal properties of two nucleopolyhedrosis vectors encoding a similar toxin gene chimer. J. Econ. Entomol. 93:1096–1104.CrossRefGoogle Scholar
  132. Tuan, S. J., Hou, R. F., Kao, S. S., Lee, C. F., and Chao, Y. C., 2005. Improved plant protective efficacy of a baculovirus using an early promoter to drive insect-specific neurotoxin expression. Bot. Bull. Acad. Sin. 46:11–20.Google Scholar
  133. Tumilasci, V. F., Leal, E., Zanotto, P. M. A., Luque, T., and Wolff, J. L. C. 2003. Sequence analysis of a 5.1 kbp region of the Spodoptera frugiperda multicapsid nucleopolyhedrovirus genome that comprises a functional ecdysteroid UDP-glucosyltransferase (egt) gene. Virus Genes 27:137–144.CrossRefGoogle Scholar
  134. Valicente, F. H., and Cruz, I. 1991. Controle biológico da lagarta-do-cartucho, Spodoptera frugiperda, com o baculovirus. Embrapa, Sete Lagoas, Circular Técnica 15, 23 p.Google Scholar
  135. van Beek, N., Lu, A., Presnail, J, Davis, D., Greenamoyer, C., Joraski, K., et al. 2003. Effect of signal sequence and promoter on the speed of action of a genetically modified Autographa californica nucleopolyhedrovirus expressing the scorpion toxin LqhIT2. Biol. Control 27:53–64.CrossRefGoogle Scholar
  136. van Meer, M. M. M., Bonning, B. C., Ward, V. K., Vlak, J. M., and Hammock, B. D. 2000. Recombinant, catalytically inactive juvenile hormone esterase enhances efficacy of baculovirus insecticides. Biol. Control 19:191–199.CrossRefGoogle Scholar
  137. van Oers, M. M. 2006. Vaccines for viral and parasitic diseases produced with baculovirus vectors. Adv. Virus Res. 68:193–253.CrossRefGoogle Scholar
  138. van Oers, M. M., and Vlak, J. M. 2007. Baculovirus genomics. Curr. Drug Targets 8:1051–1068.CrossRefGoogle Scholar
  139. Vincent, C., Andermatt, M., and Valéro, J. 2007. Madex® and VirosoftCP4®, viral biopesticides for codling moth control. In Biological Control: A Global Perspective, eds. C. Vincent, M. S. Goethel, and G. Lazarovits, pp. 336–343. Oxfordshire, UK, and Cambridge, USA: CAB International.CrossRefGoogle Scholar
  140. Volkman, L. E., Blissard, G. W., Friesen, P. D., Keddie, B. A., Possee, R. D., and Theilman, D. A. 1995. Family Baculoviridae. In Virus Taxonomy: Sixth Report of the International Committee on Taxonomy of Viruses, eds. F. A. Murphy, C. M. Fauquet, S. A. Bishop, A. W. Ghabrial, G. P. Jarvis, M. A. Martelli, M. A. Mayo, and M. D. Summers, pp. 104–113. Vienna: Springer.Google Scholar
  141. Wang, P., and Granados, R. R. 1997. An intestinal mucin is the target substance for a baculovirus enhancin. Proc. Natl. Acad. Sci. USA 94:6977–6982.CrossRefGoogle Scholar
  142. Wang, P., Hammer, D. A., and Granados, R. R. 1994. Interaction of Trichoplusia ni granulosis virus-encoded enhancin with the midgut epithelium and peritrophic membrane of 4 lepidopteran insects. J. Gen. Virol. 75:1961–1967.CrossRefGoogle Scholar
  143. Westenberg, M., Veenman, F., Roode, E. C., Goldbach, R. W., Vlak, J. M., and Zuidema, D. 2004. Functional analysis of the putative fusion domain of the baculovirus envelope fusion protein F. J. Virol. 78:6946–6954.CrossRefGoogle Scholar
  144. Wood, H. A., Trotter, K. M., Davis, T. R., and Hughes, P. R. 1993. Per os infectivity of preoccluded virions from polyhedrin minus recombinant baculoviruses. J. Invertebr. Pathol. 62:64–67.CrossRefGoogle Scholar
  145. Zanotto, P. M. D., Kessing, B. D., and Maruniak J. E. 1993. Phylogenetic interrelationships among baculoviruses evolutionary rates and host associations. J. Invertebr. Pathol. 62:147–164.CrossRefGoogle Scholar
  146. Zhang, G. Y., Sun, X. L., Zhang, Z. X., Zhang, Z. F., and Wan, F. F. 1995. Production and effectiveness of the new formulation of Helicoverpa virus pesticide-emulsifiable suspension. Virol. Sin. 10:242–247.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Flavio Moscardi
    • 1
    Email author
  • Marlinda Lobo de Souza
  • Maria Elita Batista de Castro
  • Mauricio Lara Moscardi
  • Boguslaw Szewczyk
  1. 1.Department of AgronomyUniversidade Estadual de LondrinaLondrinaBrazil

Personalised recommendations